9.1: Sequences

Beschreibung

Infinite Series
Meri perkins
Mindmap von Meri perkins, aktualisiert more than 1 year ago
Meri perkins
Erstellt von Meri perkins vor mehr als 6 Jahre
153
0

Zusammenfassung der Ressource

9.1: Sequences
  1. Purpose: How to determine if they converge
    1. 1. Find Formula for n-th Term
      1. Idea: A sequence is a list of numbers
        1. Two Important Ideas to consider
          1. 1. What does N-th term look like?
            1. 2. Does a sequence approach a limit and converge
              1. Limit of the sequence
                1. approaches finite value
                  1. If a finite value it converges
                    1. Checking for convergence
                      1. Squeezing theorem
                        1. if an<cn<bn "For all n large enough" then cn will also have this limit
                          1. Two bounding sequences only have to "squeeze in" for small n value they may not bound the third sequence
                    2. No finite value: Diverges
              2. Recursive sequence
                1. Will have a few base terms to define outcome of other terms
                  1. find a formula for an to find the outcome of a n-th term
          2. Chapter 9: Infinite Series
            1. Checklist of Key Ideas:
              1. Infinite sequence
                1. Infinite number of terms
                2. Terms of sequence
                  1. a(n)
                    1. A Pattern of numbers to infinity
                  2. Graph and limit of sequence
                    1. Converges, or diverges
                      1. 1/n-> limit to 0
                      2. {n+1} will increase without bound
                        1. ({(-1)^n+1} will osscillate
                          1. {n/n+1} has a limiting value of 1
                            1. {1+(-1/2)^n} will occillate to 1, still converging
                      3. Recursion Formulas
                      4. 9.2: Monotone Sequences
                        1. Monotone:
                          1. Increasing or Decresing
                            1. If terms are remaining constant, or becoming more positive, increasing
                              1. Decreasing when constant or more negative terms
                              2. Strictly Monotone
                                1. Strictly Increasing and decreasing is when no two terms are remaining constant
                                  1. If terms gave a bound, then they converge
                              3. 9.3 Infinite Series
                                1. Sum of infinitely many terms, aka, a sequence is an infinite series series
                                  1. Sn=sigma from 1 to n uk
                                    1. Sn is partial sum
                                      1. n to infinity to see if converges
                                        1. geometric series from k=0 to infinity ar^k
                                          1. must start at k=0
                                            1. a/1-r
                                              1. Actual Values can be found with geometric sequences and Telescoping sums
                                                1. 1/k is tricky this is a harmonic series
                                                  1. To shift indices: Replace k with j+3
                                  2. Convergence Tests
                                    1. Integral Tesr
                                      1. Use b instead of infinity and plug infity back into integral later
                                      2. p series
                                        1. if p is greater than 1, then will diverge
                                  Zusammenfassung anzeigen Zusammenfassung ausblenden

                                  ähnlicher Inhalt

                                  2924
                                  L GG
                                  Alkalimetalle
                                  Cassibodua
                                  IKA-Theoriefragen Serie 04 (15 Fragen)
                                  IKA ON ICT GmbH
                                  IKA-Theoriefragen Serie 17 (15 Fragen)
                                  IKA ON ICT GmbH
                                  Mathe Abiturvorbereitung
                                  JuliaSt
                                  BM 13 - Allgemeine Didaktik
                                  Isabell St
                                  10 wichtige Kompetenzen moderner Lehrer
                                  Laura Overhoff
                                  EC Gesundheitspsychologie
                                  Anna B
                                  Vetie Tierhaltung und -hygiene Quiz 2012
                                  Elisabeth Tauscher
                                  Tierseuchenbekämpfung 2017
                                  Birte Schulz
                                  Vetie: Geflügelkrankheiten 2020 (Matrikel 2015)
                                  Ro F