Zusammenfassung der Ressource
Probability Theory
- Probability Space
Anmerkungen:
- ( \(\Omega\) , \(\mathcal{F}\) , P )
- Sigma-Field F
Anmerkungen:
- 3 properties
- closed under compliments
Anmerkungen:
- \( if A \in \mathcal{F} \) then \(A^c \in \mathcal{F} \)
- closed under unions
- Contains Null
Anmerkungen:
- \( \emptyset \in \mathcal{F} \)
- Probability Set
Anmerkungen:
- set of all possible outcomes
- Probability
Measure
Anmerkungen:
- P on ( \(\Omega\) , \(\mathcal{F}\) )
- two properties
- Between zero and one
Anmerkungen:
- P(null set) = 0, P(solution set) = 1
- Identity
- if An is collection of disjoint members of F, sum of proabability is sum of untion
- Given Disjoint events, Sum of probability of each events = Probability of Union
- 4 Properties, Basic Prob Math works
- Prob of compliments add up to 1
Anmerkungen:
- If B is super set of A then P(B) = P(A) + P( B\A) >= P(A)
- P( A U B) = P(A) + P(B) - P( A intersect B)
- Complex union math, proof by induction
- Conditional Probability
- Based on total number of events
Anmerkungen:
- \( \frac{N(A \cap B}{N(B)} \)
- P(A given B) = P(A intersection B) / P(B)
- Lemma
Anmerkungen:
- \( P(A) = P(A \mid B)P(B) + P(A \mid B^c)*P(B^c) \)
Question, prove above
- Independance
- Def.
Anmerkungen:
- \( P(A \cap B) = P(A)(B) \)