Quadratic Relation

Beschreibung

Mindmap am Quadratic Relation, erstellt von Anny Zheng am 05/12/2018.
Anny Zheng
Mindmap von Anny Zheng, aktualisiert more than 1 year ago
Anny Zheng
Erstellt von Anny Zheng vor etwa 6 Jahre
21
0

Zusammenfassung der Ressource

Quadratic Relation

Anmerkungen:

  • the graph of a quadratic relation is called a Parabola  It can either open up or down, depends on the second difference.
  1. Equations

    Anmerkungen:

    • No-Frills equation(basic equation): y=x(square) Stretch Factor : - Determines the shape(the step pattern) of a parabola - Determines whether the parabola opens up (concave up) or down (concave down)
    1. Vertex Form y=a(x-h)(square) +k
      1. gives the stretch factor (a) and the vertex (h,k)

        Anmerkungen:

        • Vertex : the point on the graph with the least or greatest y-coordinate h is the x-coordinates of vertex, k is the y-coordinates of vertex
        1. If h>0 the curve is horizontally translated h units to right If h<0 the curve is horizontally translated h units to left If k>0 the curve is vertically translated k units up If k<0 the curve is vertically translated k units down
          1. If a>1 the curve is VERTICALLY STRETCHED by a factor of a If 0<a<1 the curve is VERTICALLY COMPRESSED by a factor of a. If a<0 the curve is reflected in the x-axis
        2. Factored Form y=a(x-s)(x-t)
          1. gives the stretch factor by a
          2. Standard Form y=ax+by+c
            1. gives the stretch factor and the y intercept(c)
              1. Factoring

                Anmerkungen:

                • Standard form became factored form through factoring Factoring: the process of expanding and simplifying done in reverse
              2. Transformation

                Anmerkungen:

                • begin with the No-Frills parabola: y=x(square) and add to it
                1. HORIZONTAL AND VERTICAL TRANSLATIONS
                    1. VERTICAL STRETCHES,COMPRESSIONS & REFLECTIONS
                    2. 3 forms of equation
                    3. can be identified by second differences that are constant
                      1. P.S. click on the top right corner of each box <-----
                        Zusammenfassung anzeigen Zusammenfassung ausblenden

                        ähnlicher Inhalt

                        Die Verwandlung von Franz Kafka
                        AntonS
                        Der Stephansdom
                        Karin Wanke
                        WIRK Uni Wien
                        Lara Sophie
                        Architektur und Kunstgeschichte 1 Bilder
                        Elif Chiquet
                        Funktionen Einführung und Geradenfunktionen
                        Tahir Celikkol
                        1.2 Die Entwicklung der modernen Psychologie
                        achdrewes
                        Kapitel 1: Was macht Psychologie einzigartig?
                        bence-bartos
                        ME2 Theorie
                        Matin Shah
                        Vetie - Pathologie 2016
                        Fioras Hu
                        Vetie - Histo & Embryo - P 2017
                        Fioras Hu
                        Vetie Pharma Übungsfragen 2019/2020
                        Maite J