Vectores en R2 y R3

Beschreibung

Mindmap am Vectores en R2 y R3, erstellt von Mauricio Rodríguez am 14/02/2019.
Mauricio Rodríguez
Mindmap von Mauricio Rodríguez, aktualisiert more than 1 year ago
Mauricio Rodríguez
Erstellt von Mauricio Rodríguez vor fast 6 Jahre
3
0

Zusammenfassung der Ressource

Vectores en R2 y R3
  1. Un vector es un objeto matemático con dirección y magnitud.
    1. La palabra “vectores” se refiere a los elementos de cualquier Rn
      1. En R1 = R el vector es un punto, que llamamos escalar.
        1. En R2 el vector es de la forma (x1, x2)
          1. R3 el vector es de la forma (x1, x2, x3).
    2. Los R2 son vectores y se representan en el plano cartesiano.
      1. La dirección de aV es igual a la dirección de V si aA>0
        1. aV es igual a la dirección de -V si a<0
      2. La suma de dos vectores se define por: sean a y b vectores en R2, entonces a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).
        1. el producto escalar se define por: sea α Є R y a un vector en R2 , entonces αa = α(a1, a2) = (α a1, α a2).
        2. Se define R3 como: R3= {(a,b,c: a,b,c, E R)}
          1. Los vectores R3 también se pueden representar mediante segmentos de rectas dirigidos o flechas.
            1. Un sistema establecido de coordenadas donde todo punto de R3 se define mediante una ordenada de números reales: P ( x , y , z ) , y tiene asociado un vector posición p = OP = (x, y, z) .
              1. Un ejemplo en el siguiente esquema gráficamos al punto P ( 2 , 4 , 3 ) , y su vector posición ⃗ p = OP:
                1. Tomado la misma escala sobre cada uno de los ejes. Pero, como en R2 , es posible tomar una escala diferente para cada eje.
                  1. El producto de un escalar por un vector se define: v = ( v x, v y, v z ), k ∈ R, k . ⃗ v = (k. v x, k. v y, k. v z )
            2. Ejercicio 1: Dados u = (1, – 1, 1), v = (2, 0, 2) w=(–1, 3,–1) , ¿Existen α , β ∈ R tales que w = α.u+β. v? escribiremos la igualdad y trataremos de calcular α, y β : (–1, 3,–1) = α. (1,–1,1) + β. (2, 0, 2) (–1, 3, –1) = (α + 2β, – α, α + 2β) – 1 = α + 2 β 3 = – α – 1 = α + 2 β ⇒ α = – 3 ∧ β = 1 (–1, 3, –1) = –3. (1, – 1, 1) + 1. (2, 0, 2) Como existen α , β ∈ R tales que w = α . u + β. v , diremos que w es combinación lineal de u y v.
              1. Ejercicio 2: Vectores: u = (2, – 3, 4) v = ( – 5 , 1 , 0 ) w = ( 4 , 2 , 1 ) existen α , β ∈ R tal que w = α . u + β . v : ( 4 , 2 , 1 ) = α (2, – 3, 4) + β . (– 5, 1, 0) ( 4 , 2 , 1 ) = ( 2 α , – 3 α , 4 α ) + ( – 5 β, 1 β, 0) (4, 2, 1) = (2 α – 5 β, – 3 α + 1 β, 4 α) 2 α – 5 β = 4 – 3 α + β = 2 4 α = 1 α = 1/4 β = 11/4 Reemplazamos en: 2 α – 5 β = 4: 2 4 – 55 4 ≠ 4. Gráficamos:
                1. 1. Hallar dos vectores de módulo la unidad y ortogonales a (2, −2, 3) y (3, −3, 2).
              2. EJERCICIO 1. Determinar si los vectores AB = (35, -21) y CD = (-10, 6) tienen la misma dirección. Calcular el módulo de ambos vectores. Para determinar si dos vectores tienen la misma dirección basta comprobar si sus componentes son proporcionales. El cociente de las primeras componentes es 35/-10 (7/-2) y el de las segundas -21/6 (-7/2), por lo tanto los vectores tienen la misma dirección. El módulo de los vectores es: |AB| = (1225 + 441)^1/2 = (1666)^1/2 |CD| = (100 + 36)^1/2 = (136)^1/2
                1. EJERCICIO 2. Dado el vector libre a = (5, 3) y el punto A = (4, -1), hallar las coordenadas del punto B para que el vector fijo AB represente al vector a . Llamando (x, y) a las coordenadas de B, las componentes del vector AB son (x - 4, y + 1). Para que el vector AB represente al vector libre a se ha de verificar (x - 4, y + 1) = (5, 3), de donde, x - 4 = 5 e y + 1 = 3, obteniéndose x = 9 e y = 2. Así las coordenadas de B son (9, 2).
                Zusammenfassung anzeigen Zusammenfassung ausblenden

                ähnlicher Inhalt

                Vectores en R2 y R3
                JULIAN ALEXANDER LONDOÑO MENESES
                Algebra
                majomjg808
                Mathe Quiz
                JohannesK
                Alkalimetalle
                Cassibodua
                Folien: Systemtheorie
                tschiggli
                Ökologie fürs Abitur - Lernfolien
                disubbidienza
                Φαρμακολογια 1 Β
                Lampros Dimakopoulos
                Vetie - Pathologie Fragen aus dem A-Skript
                Fioras Hu
                Vetie Para Morphologie Entomologie
                Kristin E
                Vetie: Lebenmittel 2019
                Johanna Tr
                Vetie - Lebensmittelkunde 2019
                Valerie Nymphe