Zusammenfassung der Ressource
Maths Core 3
- Functions
- y = f(x)
- Composite function fg(x) can be
worked out by f(g(x))
- Transformations of graphs
- e and ln
- y=e^x is the same as x = ln(y)
- ln rules
- ln(A) + ln(B) = ln(A+B)
- ln(A) - ln(B) = ln(A/B)
- nln(A) = ln(A^n)
- f(x) = e^x
- f(x) = ln(x)
- Triganometary
- Minor trig functions
- cosec(x) = 1/sin(x)
- sec(x) = 1/cos(x)
- cot(x) = 1/tan(x)
- tan(x) = sin(x)/cos(x)
- cot(x) = cos(x)/sin(x)
- Identities
- Compound angle formulae
- sin(A±B) = sin(A)cos(B) ± cos(A)sin(B)
- cos(A±B) = cos(A)cos(B) ∓ sin(A)sin(B)
- tan(A±B) = [tan(A) ± tan(B)] / [1 ∓ tan(A)tan(B)]
- Double angle formulae
- sin(2A) = 2sin(A)cos(A)
- cos(2A) = cos^2(A) - sin^2(A)
- cos(2A) = 2cos^2(A) - 1
- cos(2A) = 1- 2sin^2(A)
- tan(2A) = [2tan(A)] / [1 - tan^2(A)]
- Pythagorean identities
- sin^2(x) + cos^2(x) = 1
- sin^2(x) = 1 - cos^2(x)
- cos^2(x) = 1 - sin^2(x)
- Differentiation
- Chain rule
- y = f(g(x)) => dy/dx = f'(g(x)) . g'(x)
- dy/dy = dy/du . du/dx
- Differentials
- y => dy/dx
- f(x) => f'(x)
- x^n => nx^(n-1)
- e^x => e^x
- ln(x) => 1/x
- sin(x) => cos(x)
- cos(x) => -sin(x)
- tan(x) => sec^2(x)
- cosec(x) => -cosec(x)cot(x)
- sec(x) => sec(x)tan(x)
- cot(x) => -cosec^2(x)
- Modulus Function
- y = |x|
- graph
- to draw graph just reflect at the point where it crosses the x axis