Physics Exam 1

Beschreibung

Mindmap am Physics Exam 1, erstellt von oliviab am 24/09/2013.
oliviab
Mindmap von oliviab, aktualisiert more than 1 year ago
oliviab
Erstellt von oliviab vor fast 11 Jahre
67
0

Zusammenfassung der Ressource

Physics Exam 1
  1. Chapter 2 Motion, forces, and Newton's Laws
    1. Motion
      1. acceleration
        1. a = v / t
        2. position
          1. velocity
            1. velocity is a vector quantity,the magnitude of velocity is called speed.
              1. Vave = delta x / delta t
                1. average velocity and instantaneous velocity
                2. Newton's Law
                  1. Newton's First Law: If the total force acting on an object is zero, the object will maintain its velocity forever.
                    1. Newton's Second Law: In many situations, several different forces act on an object simultaneously. the total force on the object is the sum of these individual forces. The acceleration of an object with mass m is given by: a = F / m.
                      1. When one object exerts a force on a second object, the second object exerts a force of the same magnitude and opposite direction on the first object.
                        1. all action come in action-reaction pairs.
                  2. Chapter 3: Forces and Motion in One Dimension
                    1. Part 1: constant acc. equations of motion, normal forces and weight, free body diagrams
                      1. Motion Along a Line
                        1. (Vfx)=(Vix) + (Ax)(T)
                          1. X= (Vix)(T) + (1/2) (Ax)(T)^2
                            1. (Vfx)^2= (Vix)^2 + (2)(Ax)(X)
                            2. Normal Force
                              1. Acts perpendicularly to the plane of contact
                                1. Apparent Weight= Normal Force
                                2. Free Body Diagram
                                  1. Used for analysis using Newton's 2nd Law
                                  2. Friction
                                    1. Opposes the Motion
                                      1. Kinetic Friction: F(friction)= (coefficient of kinetic friction) x N (normal force)
                                        1. Static Friction: F (friction)= less than/ equal to= (coefficient of static friction) x N (normal force)
                                      2. Part 2: free fall motion, Newton's 2nd Law applications
                                        1. Free fall motion
                                          1. any object which once projected or dropped continues in motion by its own inertia and is influenced only by the down force of gravity
                                            1. object always has acceleration of gravity: 9.8 m/s^2
                                            2. Tension
                                              1. the ideal "cord" has zero mass, does not stretch, and tension is the same throughout the cord
                                          2. Chapter 4
                                            1. Ch4.1 static
                                              1. ΣF(F-net)=ma
                                                1. When forces are balanced their is no acceleration in the system
                                                  1. this is called static equilibrium
                                                    1. Which also means if there is no acceleration the is no un-balanced force F-net=0
                                                  2. Projectile Motion
                                                    1. X-component of velocity is always constant in projectile motion unless friction force is present.
                                                      1. The Y-component of velocity is always zero at its peak hieght
                                                        1. Always acted on by gravity if going up (negative acceleration) if going down (positive acceleration)
                                                        2. Range: is the total distances the object can cover in the X-direction
                                                          1. can be calculated by taking the X-component of the velocity and multiplying it by 2x the time it takes an object to reach its peach in (not including height differences or dead drops)
                                                        3. Tension force
                                                          1. A=(m2-m1)g/m1+m2
                                                        Zusammenfassung anzeigen Zusammenfassung ausblenden

                                                        ähnlicher Inhalt

                                                        Allgemeine Psychologie
                                                        CharlotteSc
                                                        LB A, Kapitel 1.2, Firmierung
                                                        Stefan Kurtenbach
                                                        Öff. Recht - Streitigkeiten Staatshaftungsrecht
                                                        myJurazone
                                                        Faust I
                                                        barbara91
                                                        10 Lernmethoden
                                                        Laura Overhoff
                                                        BAS1 Funktion von Kreislauf und Atmung
                                                        dennis.konscholke
                                                        Euro-FH // Zusammenfassung PEPS1
                                                        Robert Paul
                                                        WIRK III
                                                        luis r
                                                        IKA-Theoriefragen Serie 05 (15 Fragen)
                                                        IKA ON ICT GmbH
                                                        Vetie-KPrim Fragen 2017 Innere
                                                        Ju Pi