Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )

Beschreibung

Logistic Regresion Models
karlagape17
Mindmap von karlagape17, aktualisiert more than 1 year ago
karlagape17
Erstellt von karlagape17 vor mehr als 9 Jahre
22
0

Zusammenfassung der Ressource

Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )
  1. The Multiple Logistic Regression Model
    1. INTRODUCTION
      1. ability to handle many variables
      2. MODEL
        1. TESTING THE MODEL
          1. univariable Wald test statistics
        2. Simple
          1. INTRODUCTION
            1. outcome variable is discrete, binary or dichotomous.
              1. Example 1 Excel-Star
                1. Follow Logistic distribution
                  1. logistic regression model
                    1. Summary:
                      1. 1. The model for the conditional mean of the regression equation must be bounded between zero and one. 2. The binomial, not the normal, distribution describes the distribution of the errors and is the statistical distribution on which the analysisis based
                    2. FITTING THE LOGISTIC REGRESSION MODEL
                      1. maximum likelihood.
                        1. the method yields values for the unknown parameters that maximize the probability of obtaining the observed set of data. In order to apply this method we must first construct a function, called the likelihood function
                          1. The maximum likelihood estimators of the parameters are the values that maximize this function
                      2. TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS
                        1. The statistic D is called the deviance, and for logistic regression, Is the same as the sum-of-squares in linear regression
                        2. CONFIDENCE INTERVAL ESTIMATION
                        3. Multinomial and Ordinal Outcomes
                          1. nominal with more than two levels
                            1. discrete choice model
                              1. The variable has three levels A,B or C is chosen.Possible covariates might include gender,age,income,family size,and others.
                                1. multinomial ,polychotomous, or polytomous logistic regression
                              2. Model
                                1. p covariates and a constant term, denoted by the vector x,of length p+1,where x0=1.
                              3. Interpretation of the Fitted Logistic Regression Model
                                Zusammenfassung anzeigen Zusammenfassung ausblenden

                                ähnlicher Inhalt

                                A-Z E-Learning Trends die du kennen solltest
                                AntonS
                                Öff. Recht - Kommunal- und Baurecht - Streitigkeiten
                                myJurazone
                                Aufstieg der NSDAP
                                Anina Hagi
                                Wortschatz Französisch 1. Angaben zur Person
                                l_u_n_a_19
                                Vetie - Histo & Embryo P 2014
                                Fioras Hu
                                WERB Uni Wien 2017/18
                                Denise Schmid
                                Vetie - MiBi 2011
                                Fioras Hu
                                WT1 Uni Due
                                Awash Kaul
                                AOW-Psychologie SS18
                                Anna Huber
                                Vetie Para Morphologie Virtuelles Mikroskop
                                Kristin E
                                Vetie Repro Bilderspaß
                                Tropsi B