Chapter 4: Discovering and Proving Triangle Properties

Beschreibung

Mindmap am Chapter 4: Discovering and Proving Triangle Properties, erstellt von Ashley Phillips am 04/11/2015.
Ashley  Phillips
Mindmap von Ashley Phillips , aktualisiert more than 1 year ago
Ashley  Phillips
Erstellt von Ashley Phillips vor etwa 9 Jahre
10
2

Zusammenfassung der Ressource

Chapter 4: Discovering and Proving Triangle Properties
  1. 4.1 Triangle Sum Conjecture
    1. The sum of the measures of the angles in every triangle is 180 degrees.
    2. 4.2 Properties of Isosceles triangles
      1. Vertex angle: The angle between the two congruent sides The base angles are the other two angles. The side between the two base angle is called the base. The other two sides are caused legs.
      2. 4.3 Triangle Inequality conjecture
        1. The sum of the lengths of any two sides of a triangle is more than the length of the third side.
          1. 4.4 and 4.5 Are there congruent shortcuts?
            1. SSS
              1. SAS
                1. ASA
                  1. SAA
                    1. SSA
                      1. AAA
                        1. Three pairs of congruent angles
                          1. Works
                        2. Two pair of congruent sides and one pair of congruent angles.
                          1. Doesn't work
                        3. Two pair of congruent angles and one pair of congruent sides(nots not between the pair of angles)
                          1. Works
                        4. Two pair pair of congruent angle and one pair of congruent sides(sides between the pair of angles)
                          1. Works
                        5. Two pairs of congruent sides and one pair of congruent angles.(angles between the pair of sides.
                          1. Works
                        6. Three pairs of congruent sides
                          1. Works
                        7. 4.6 Corresponding Parts of Congruent triangles
                          1. If you use a congruence shortcut, then you can use CPCTC to show that any of their corresponding parts are congruent
                            1. 4.7 Flowchart thinking
                              1. Flowchart proofs are when you fill in boxes for a proof instead of a two column proof.
                                1. 4.8 Proving Special Triangle Conjectures
                                  1. Vertex angleBisector Conjecture
                                    1. In an isosceles triangle the bisector of the vertex angle is also equiangular and equilateral.
                              Zusammenfassung anzeigen Zusammenfassung ausblenden

                              ähnlicher Inhalt

                              Physik Formeln
                              AntonS
                              Spanisch Einstufungstest Niveau B1.2
                              SprachschuleAktiv
                              Un secret - Ein Geheimnis von Philippe Grimbert
                              Laura Overhoff
                              Unterrichtsplanung in 5 Minuten
                              h.a.mueller
                              Chemieabitur 2016
                              peteka
                              Wagenkunde
                              malimi something
                              Wirk Uni Wien Teil 2
                              lazer der boss
                              Φαρμακολογία 1 (Ερωτήσεις)
                              Lampros Dimakopoulos
                              Vetie - Radiologie 2018 Teil 2
                              Luca Russell
                              Chirurgie 2014 Vetie
                              Kim Langner
                              Vetie - spez. Pathologie 2023
                              Christopher Groß