Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

11 Strategies In Integrations

Beschreibung

Mindmap am 11 Strategies In Integrations, erstellt von amyrashazzyra97 am 22/01/2016.
amyrashazzyra97
Mindmap von amyrashazzyra97, aktualisiert more than 1 year ago
amyrashazzyra97
Erstellt von amyrashazzyra97 vor fast 9 Jahre
11
0
1 2 3 4 5 (0)

Zusammenfassung der Ressource

11 Strategies In Integrations
  1. Basic Substitution
    1. 1) Take function that have high power to be as U and differentiate it
      1. 2) Replace integral with variable U and du, the integrate it
        1. 3) After integrate, replace back U with the original function
        2. Completing The Square
          1. Basic substitution is not available
            1. To get 1 constant and 1 variable
            2. Trigonometric Identities
              1. sin2x + cos2x = 1
                1. 1 + tan2x = sec2x
                  1. 1 + cot2x = csc2x
                  2. Addition Formulas
                    1. cos (A+B) = cos A cos B - sin A sin B
                      1. sin (A+B) = sin A cos B + cos A sin B
                      2. Double-Angle Formulas
                        1. sin 2x = 2 sin x cos x
                          1. cos 2x = cos2x - sin2x
                          2. Half-Angle Formulas
                            1. cos2x = (1 + cos2x)/2
                              1. sin2x = (1 - cos2x)/2
                            2. Improper Fraction
                              1. Use long division for polynomials
                                1. Basic substitution is not available
                                2. Separating Fractions
                                  1. Applicable when the fractions can be separated
                                    1. To get simpler integrand
                                    2. Multiplying By A Form of 1
                                      1. Used to multiply the integral by some term divided by itself
                                        1. To get simpler integrand
                                          1. Basic substitution, completing the square, improper fraction, and separating function are not available
                                          2. Eliminating Square Roots
                                            1. Used when have a trigonometric function in the square root
                                              1. Used when trigonometric functions can be simplified by using trigonometric identities to a squared trigonometric form
                                                1. Sketch the graph to solve the absolute integrand
                                                2. Integration By Parts
                                                  1. 1) Integral u dv = uv - integral v du
                                                    1. A right choose of u by using ILATE RULE while dv is easy to integrate
                                                      1. I : INVERSE TRIGO / INVERSE HYPERBOLIC
                                                        1. L : LOGARITHMIC / GENERAL LOGARITHMIC
                                                          1. A : ALGEBRAIC
                                                            1. T: TRIGONOMETRIC / HYPERBOLIC
                                                              1. E : EXPONENTIAL / GENERAL EXPONENTIAL
                                                              2. Used when Basic Substitution, Completing the Square, Trigonometric Identities, Improper Fraction, Separating Fractions, Multiplying by a Form of 1, and Eliminating Square Roots do not work
                                                                1. 2) Tabular Integration ONLY FOR :
                                                                  1. Integral ALGEBRAIC . TRIGONOMETRIC dx
                                                                    1. Integral ALGEBRAIC . EXPONENTIAL dx
                                                                  Zusammenfassung anzeigen Zusammenfassung ausblenden

                                                                  0 Kommentare

                                                                  There are no comments, be the first and leave one below:

                                                                  ähnlicher Inhalt

                                                                  Quiz-Allgemeinwissen
                                                                  AntonS
                                                                  Die Reformation (Karteikarten)
                                                                  AntonS
                                                                  Elektrischer Widerstand
                                                                  Peter Kasebacher
                                                                  Deutsche Redewendungen und Umgangssprache / Quiz 02 / deutschlernerblog.de
                                                                  deutschlernerblog.de
                                                                  BKF C95 (Fragen der Ziffern 1a, 1b)
                                                                  Harald Koenig
                                                                  Schülern richtig Feedback geben
                                                                  Laura Overhoff
                                                                  Protein
                                                                  Steffie1789
                                                                  Purchase -to -Pay Geschäftsprozess
                                                                  zok42.com
                                                                  Vetie Histopatho 2016
                                                                  Alena Gesing
                                                                  AVO 2015 Vetie
                                                                  Anne Käfer