Zusammenfassung der Ressource
DISTRIBUCIÓN DE VARIABLES CONTINUAS
- CONCEPTO
- Una variable aleatoria X es continua si su función de distribución es una
función continua. En la práctica, se corresponden con variables
asociadas con experimentos en los cuales la variable medida puede
tomar cualquier valor en un intervalo: mediciones biométricas,
intervalos de tiempo, áreas, entre otras.
- Diremos que una variable aleatoria X continua
tiene una distribución absolutamente continua
si existe una función real f, positiva e integrable
en el conjunto de números reales.
- EXPRESÍON SIMBOLICA: F(x) = P( X \le x ) = \int_{-\infty}^{x} f(t)\, dt
- Por lo tanto, se dice que Se denomina variable continua a aquella
que puede tomar cualquiera de los infinitos valores existentes
dentro de un intervalo.
- Existen varios tipos de variables continuas, entre las cuales se tienen
- Las definidas en un intervalo acotado
Anmerkungen:
- La distribución arcoseno, definida en el intervalo [a,b].
La distribución beta, definida en el intervalo [0, 1], que es útil a la hora de estimar probabilidades.
La distribución del coseno alzado, sobre el intervalo [\mu-s,\mu+s].
La distribución degenerada en x0, en la que X toma el valor x0 con probabilidad 1. Puede ser considerada tanto una distribución discreta como continua.
La distribución de Irwin-Hall o distribución de la suma uniforme, es la distribución correspondiente a la suma de n variables aleatorias i.i.d. ~ U(0, 1).
La distribución de Kent, definida sobre la superficie de una esfera unitaria.
La distribución de Kumaraswamy, tan versátil como la beta, pero con FDC y FDP más simples.La distribución logarítmica continua.La distribución logit-normal en (0, 1).
La distribución normal truncada, sobre el intervalo [a, b].
La distribución reciproca, un tipo de distribución inversa.
La distribución triangular,
definida en [a, b], de la cual un caso particular es la distribución de
la suma de dos variables independientes uniformemente distribuidas (la
convolución de dos distribuciones uniformes).
La distribución uniforme continua definida en el intervalo cerrado [a, b], en el que la densidad de probabilidad es constante.
La distribución rectangular es el caso particular en el intervalo [-1/2, 1/2].La distribución U-cuadrática, definida en [a, b], utilizada para modelar procesos bimodales simétricos.
La distribución von Mises, también llamada distribución normal circular o distribución Tikhonov, definida sobre el círculo unitario.
La distribución von Mises-Fisher, generalización de la anterior a una esfera N-dimensional.
La distribución semicircular de Wigner, importante en el estudio de las matrices aleatorias.
- La definida en un
intervalo
semi-infinito
[0,infinito)
Anmerkungen:
- La distribución beta prima.
La distribución de Birnbaum–Saunders, también llamada distribución de resistencia a la fatiga de materiales, utilizada para modelar tiempos de fallo.
La distribución chi.
La distribución chi no central.
La distribución χ² o distribución de Pearson, que es la suma de cuadrados de n variables aleatorias independientes
gaussianas. Es un caso especial de la gamma, utilizada en problemas de
bondad de ajuste.
La distribución chi-cuadrada inversa.
La distribución chi-cuadrada inversa escalada.
La distribución chi-cuadrada no central.
La distribución de Dagum.
La distribución exponencial, que describe el tiempo entre dos eventos consecutivos en un proceso sin memoria.
La distribución F, que es la razón entre dos variables y independientes. Se utiliza, entre otros usos, para realizar análisis de varianza por medio del test F.
La distribución F no central.La distribución de Fréchet.
La distribución gamma, que describe el tiempo necesario para que sucedan n repeticiones de un evento en un proceso sin memoria.
La distribución de Erlang,
caso especial de la gamma con un parámetro k entero, desarrollada para
predecir tiempos de espera en sistemas de líneas de espera.
La distribución gamma inversa.
La distribución gamma-Gompertz, que se utiliza en modelos para estimar la esperanza de vida.
La distribución de Gompertz.
La distribución de Gompertz desplazada.
La distribución de Gumbel tipo-2.
La distribución de Lévy.
- Las definidas en la
recta real completa
Anmerkungen:
- La distribución de Behrens–Fisher, que surge en el problema de Behrens–Fisher.
La distribución de Cauchy,
un ejemplo de distribución que no tiene expectativa ni varianza. En
física se le llama función de Lorentz, y se asocia a varios procesos.
La distribución de Chernoff.
La distribución estable o distribución asimétrica alfa-estable de Lévy,
es una familia de distribuciones usadas e multitud de campos.
Las distribuciones normal, de Cauchy, de Holtsmark, de Landau y de Lévy pertenecen a esta familia.
La distribución estable geométrica.La distribución de Fisher–Tippett o distribución del valor extremo generalizada.
La distribución de Gumbel o log-Weibull, caso especial de la Fisher–Tippett.La distribución de Gumbel tipo-1.
La distribución de Holtsmark, ejemplo de una distribución con expectativa finita pero varianza infinita.
La distribución hiperbólica.La distribución secante hiperbólica.
La distribución SU de Johnson.La distribución de Landau.La distribución de Laplace.La distribución de Linnik.
La distribución logística, descrita por la función logística.
La distribución logística generalizada.
La distribución map-Airy.
- La distribución normal,
también llamada distribución gaussiana o campana de Gauss. Está muy
presente en multitud de fenómenos naturales debido al teorema del límite
central: toda variable aleatoria que se pueda modelar como la suma de
varias variables independientes e idénticamente distribuidas con
expectativa y varianza finita, es aproximadamente normal.
- La distribución normal generalizada.
La distribución normal asimétrica.
La distribución gaussiana exponencialmente modificada, la convolución de una normal con una exponencial.
La distribución normal-exponencial-gamma.
La distribución gaussiana menos exponencial es la convolución de una distribución normal con una distribución exponencial (negativa).
La distribución de Voigt, o perfil de Voigt, es la convolución de una distribución normal y una Cauchy. Se utiliza principalmente en espectroscopía.La distribución tipo IV de Pearson.
La distribución t de Student, útil para estimar medias desconocidas de una población gaussiana.
La distribución t no centra
- Las definidas
en un
dominio
variable
Anmerkungen:
- La distribución de Fisher–Tippett o distribución del valor extremo generalizada, puede estar definida en la recta real completa o en un intervalo acotado, dependiendo de sus parámetros.
La distribución de Pareto generalizada está definida en un dominio que puede estar acotado inferiormente o acotado por ambos extremos.
La distribución lambda de Tukey, puede estar definida en la recta real completa o en un intervalo acotado, dependiendo de sus parámetros.
La distribución de Wakeby.
- Distribución en las que el
logaritmo de una variable
aleatoria está
distribuidoconforme a una
distribución estándar
Anmerkungen:
- La distribución log-Cauchy.
La distribución log-gamma.
La distribución log-Laplace.
La distribución log-logistic.
La distribución log-normal.
La distribución de Mittag–Leffler.
La distribución de akagami.Variantes de la distribución normal o de Gauss:
La distribución normal pleglada.
La distribución semi normal.La distribución de Gauss inversa, también conocida como distribución de Wald.
La distribución de Pareto y la distribución de Pareto generalizada.La distribución tipo III de Pearson.
La distribución por fases bi-exponencial, comúnmente usada en farmacocinética.
La distribución por fases bi-Weibull.La distribución de Rayleigh.La distribución de mezcla de Rayleigh.
La distribución de Rice.
La distribución T² de Hotelling.
La distribución de Weibull o distribución de Rosin-Rammler, para describir la distribución de tamaños de determinadas partículas.
La distribución Z de Fisher.
- Distribuciones
mixtas
discreta/continua
Anmerkungen:
- La distribución gaussiana rectificada, es una distribución normal en la que los valores negativos son sustituidos por un valor discreto en cero.
- Distribuciones
multivariables
Anmerkungen:
- La distribución de Dirichlet, generalización de la distribución beta.
La fórmula de muestreo de Ewens o distribución multivariante de Ewens,
es la distribución de probabilidad del conjunto de todas las
particiones de un entero n, utilizada en el análisis genético de poblaciones.El modelo de Balding–Nichols, utilizado en el análisis genético de poblaciones.
La distribución multinomial, generalización de la distribución binomial.
La distribución normal multivariante, generalización de la distribución normal.
La distribución multinomial negativa, generalización de la distribución binomial negativa.La distribución log-gamma generalizada multivariante.
- Distribuciones Matriciales
Anmerkungen:
- La distribución de Wishart.
La distribución de Wishart inversa.
La distribución normal matricial.
La distribución t matricial.
- Distribuciones
Misceláneas
Anmerkungen:
- Distribución de Cantor.
Distribuciones logísticas generalizadas.
Distribuciones de Pearson.Distribución de tipo fase.
- Distribuciones
no numericas
Anmerkungen:
- La distribución categórica.