Differentiation

Beschreibung

My first mind map. Identifies key concepts of derivatives
Vivienne Holmes
Mindmap von Vivienne Holmes, aktualisiert more than 1 year ago
Vivienne Holmes
Erstellt von Vivienne Holmes vor mehr als 8 Jahre
443
1

Zusammenfassung der Ressource

Differentiation

Anlagen:

  1. Why? To find the gradient of a curve at a point
    1. Equivalent to finding the gradient of the tangent to the curve at that point
      1. Gradient of equation is change in y divided by change in x

        Anmerkungen:

        •           y-y1=m(x-x1)   m=(y-y1) /(x-x1)     
        1. Gradient of normal is the negative inverse of m or negative inverse dy/dx

          Anmerkungen:

          •   y=x3 at x =1, y=1 dy/dx = 3x^2 so at x=1, gradient = 3.   Normal = - 1/m So at x=1, y=1 gradient = -1/3      
        2. Gradient of a tangent= dy/dx

          Anmerkungen:

          •      y=x3 at x =1, y=1  dy/dx = 3x^2 so at x=1, gradient = 3.
          1. A gradient is the rate of change
      2. How to differentiate?
        1. Differentiating a polynomial function (one variable)

          Anlagen:

          1. Chain Rule

            Anlagen:

            1. Product Rule

              Anlagen:

              1. Quotient Rule

                Anlagen:

                1. Natural Logarithm and Exponential functions

                  Anlagen:

                  1. Trig Functions

                    Anlagen:

                  2. The gradient of a function has different names
                    1. The gradient function
                      1. The derived function with respect to x
                        1. The differential coefficient with respect to x
                          1. The first differential with respect to x
                            1. dy/dx
                              1. f'(x)
                              2. Differentiate dy/dx to get the second order differential
                                1. The second order differential has different names
                                  1. d^2y/dx^2
                                    1. f''(x)
                                      1. The second derivative of a function
                                    2. How to find maximum and minimum values of the function
                                      1. At maximum and minimum values of f(x), f'(x) = 0.
                                        1. At maximum value, f''(x) is negative
                                          1. At minimum value, f''(x) is positive
                                        Zusammenfassung anzeigen Zusammenfassung ausblenden

                                        ähnlicher Inhalt

                                        A-level Maths: Key Differention Formulae
                                        humayun.rana
                                        Maths GCSE - What to revise!
                                        livvy_hurrell
                                        GCSE Maths Symbols, Equations & Formulae
                                        livvy_hurrell
                                        Fractions and percentages
                                        Bob Read
                                        GCSE Maths Symbols, Equations & Formulae
                                        Andrea Leyden
                                        FREQUENCY TABLES: MODE, MEDIAN AND MEAN
                                        Elliot O'Leary
                                        HISTOGRAMS
                                        Elliot O'Leary
                                        CUMULATIVE FREQUENCY DIAGRAMS
                                        Elliot O'Leary
                                        GCSE Maths: Understanding Pythagoras' Theorem
                                        Micheal Heffernan
                                        Using GoConqr to study Maths
                                        Sarah Egan
                                        New GCSE Maths
                                        Sarah Egan