PHYS2041 Quantum Mechanics

Beschreibung

Queensland Certificate of Education Physics Mindmap am PHYS2041 Quantum Mechanics, erstellt von Lucy Lowe am 24/07/2017.
Lucy Lowe
Mindmap von Lucy Lowe, aktualisiert more than 1 year ago
Lucy Lowe
Erstellt von Lucy Lowe vor mehr als 7 Jahre
83
0

Zusammenfassung der Ressource

PHYS2041 Quantum Mechanics
  1. Wave-particle duality

    Anmerkungen:

    • every object has wave-like and particle-like properties (microscopic objects 'are’ particles and waves at the same time)
    1. De Broglie wavelength

      Anmerkungen:

      • De Broglie wavelength \[ \lambda = \frac{h}{p} \] h = 6.24  x10-34 Js
      1. non-relativistic particles

        Anmerkungen:

        • Momentum \[ p = mv \] \(m \) -mass (kg) \(v = |v| \) -speed \(h\) - plank's constant \(6.62607004\times10-34 Js \) wavelength \[ \lambda = \frac{h}{mv} \]
        1. particles of light

          Anmerkungen:

          • photons = quanta of E.M radiation \[ p = hk = h \omega/c \rightarrow \lambda = \frac{h}{p} = \frac{2 \pi h}{p} = \frac{2 \pi h}{\omega} =Tc \]   \(\lambda \) - wavelength\(T\) -oscillation period \(\omega \) - frequency\(k = 2 \pi / \lambda \) - wave-number
          1. Energy of photon

            Anmerkungen:

            • \(E = h \mu \) \( \lambda = \frac{h}{p} \) \[ E  = \frac{hc}{\lambda} = pc \] \( \mu \) - period
          2. kinetic Energy

            Anmerkungen:

            • \[\frac{1}{2} mv^2 = \frac{1}{2} pv =  \frac{p^2}{2m} \]
          3. momentum >= 0

            Anmerkungen:

            • Energy is never zero Always ground amount of energy p =mv = kg m/s
        2. quantised

          Anmerkungen:

          • comes in discrete portions -Enger in light particles
          1. Black body radiation

            Anmerkungen:

            • how heated bodies radiate 
            1. Rayleigh-Jeans intensty spectrum result

              Anmerkungen:

              • \[ I(\lambda ) = \frac{8 \pi}{ \lambda^4} k_{B} T \]
              1. E.M. radiation

                Anmerkungen:

                • -Field that permeates all space Max Planck (1900): Energy of E.M. radiation isquantised (comes in discrete portions): \[ E = nh \omega \]\(n = 0,1,2,3,... \) -  number of excitation quantah - planks constant\( \omega \) - frequency
                1. classically

                  Anmerkungen:

                  • Each standing wave or oscillator mode has two degrees of freedom classically, and should have an average thermal energy . \[ k_{B} T \] (classically) ultraviolet  catastrophe
                2. Planck’s (quantum) radiation law

                  Anmerkungen:

                  • \[ I(\lambda ) = \frac{8 \pi hc}{ \lambda^{5} \left(e^{\frac{hc}{ \lambda k_{B} T}} -1\right)} \]
                3. Photo-electric effect
                  1. Atomic spectra

                    Anmerkungen:

                    • emission spectrum of atoms consists of just few (discrete) narrow spectral lines at certain wavelengths
                    1. Hydrogen atom spectrum
                      1. Bohr's Rule

                        Anmerkungen:

                        • 2π x (electron mass) x (electron orbital speed) x (orbit radius) = (any integer) x h
                        • The energy lost by the electron is carried away by a photon: photon energy = (e’s energy in larger orbit) - (e’s energy in smaller orbit)
                      2. The wave function

                        Anmerkungen:

                        • Can only describe quantum systems when closed system (pure states). Open systems are described by density matrix.
                        1. The Schrodinger Equation

                          Anmerkungen:

                          • \[ ih \frac{ \Psi}{dt} = -\frac{h^2}{2m} \frac{d^2 \Psi}{dx^2} + V(x,t) \Psi \]
                          1. The particle must be somewhere

                            Anmerkungen:

                            • \[ \int_{- \infty}^{\infty} |\Psi( x,t)|^2 dx = 1 \]
                          2. Normalisation
                            1. probabilty density

                              Anmerkungen:

                              • \[ <x> = \int_{-\infty}^{+\infty} x |\Psi (x, t)|^2 dx \] expectation value of x^2 \[ <x^2>  = \int_{-\infty}^{+\infty} x^2 |\Psi (x, t)|^2 dx \]
                              • mean variance of particle position, standard deviation. \[ \alpha_{x} = \sqrt{<(\Delta x)^2>} = \sqrt{ <x^2> - <x>^2} \]
                            2. Expectation or mean values

                              Anmerkungen:

                              • \[ \langle O \rangle  = \int dx \psi*O(x,p) \psi \]
                              1. coordinate representation
                                1. momentum operator

                                  Anmerkungen:

                                  • \[ \hat{p} = -ih \frac{d}{dx} \]
                              2. infinite well
                                1. Energy

                                  Anmerkungen:

                                  • \[E_n = \frac{h^2}{2m}(\frac{\pi}{a})^2n^2\]
                                  1. wave function
                                  2. harmonic oscillator
                                    1. length scale

                                      Anmerkungen:

                                      • \[l_{ho} = \sqrt{\ hbar /m \omega} \]
                                      1. Properties of raising and lowering operators

                                        Anmerkungen:

                                        • \[ \hat{a}_+ \psi_n = \sqrt{n+1}\psi_{n+1} \] \[ \hat{a}_- \psi_n = \sqrt{n}\psi_{n-1} \]

                                      Medienanhänge

                                      Zusammenfassung anzeigen Zusammenfassung ausblenden

                                      ähnlicher Inhalt

                                      Quantum Mechanics
                                      emmalmillar
                                      Quantum physics
                                      hmccain
                                      Waves
                                      kate.siena
                                      Forces and their effects
                                      kate.siena
                                      Forces and motion
                                      Catarina Borges
                                      AQA Physics P1 Quiz
                                      Bella Statham
                                      GCSE AQA Physics - Unit 3
                                      James Jolliffe
                                      Using GoConqr to study science
                                      Sarah Egan
                                      GCSE AQA Physics 1 Energy & Efficiency
                                      Lilac Potato
                                      Junior Cert Physics formulas
                                      Sarah Egan
                                      OCR Physics P4 Revision
                                      Dan Allibone