1.4 Quadratic Equations

Beschreibung

Bachelors Degree Pre Calculus (Chapter 1: Equations & Inequalities) Notiz am 1.4 Quadratic Equations, erstellt von Rachel Osborne am 22/01/2016.
Rachel Osborne
Notiz von Rachel Osborne, aktualisiert more than 1 year ago
Rachel Osborne
Erstellt von Rachel Osborne vor fast 9 Jahre
43
2

Zusammenfassung der Ressource

Seite 1

Quadratic Equations The standard form of a Quadratic Equation is (ax squared +bx + c = 0)a,b, and c are real numbersA Quadratic Equation is a second-degree equation

Zero-Factor Property If ab = 0, then a = 0, or b = 0, or they both equal 0

Square Root Property If x squared = k, then x = the positive OR negative square root of kBoth solutions are real if k > 0

Completing the Square If a does not equal 1, divide both sides of the equation by a Rewrite so that the constant is on one side Square 1/2 of the coefficient of x, add this square to each side of the equation Factor the remaining trinomial as a perfect square and combine like terms Use the Square Root Property to complete

Quadratic Formula

The Discriminant is what lies under the radical sign.A positive, perfect square discriminant means that there are 2 rational solutionsA positive, not perfect square discriminant means that there are 2 irrational solutionsA discriminant of 0 means that there is 1 real answerA negative discriminant means that there are 2 imaginary answers

Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Unit 3 RQA Review
Cassidy Paine
Quadratics
kalina
Completing The Square
Oliver Hall
Roots of Equations - Quadratic
Alex Burden
Algebra 2 Checkpoint 4.4 - 4.6
Renee Weisenstein
Quadratics
jamie_morley_
Fachausdrücke in Deutsch
Christian Schett
LB F, Kapitel 2, Grundbegriffe der Kosten- und Leistungsrechnung
Stefan Kurtenbach
Arbeitsrecht (Fragen)
Maximilian Mustermann
Wortschatz Französisch 3. Gesundheit und Medizin
l_u_n_a_19
Vetie Virologie 2014
J R