Mathematical Induction

Beschreibung

A-Levels Pure Mathematics Notiz am Mathematical Induction, erstellt von Alex Burden am 24/04/2017.
Alex Burden
Notiz von Alex Burden, aktualisiert more than 1 year ago
Alex Burden
Erstellt von Alex Burden vor mehr als 7 Jahre
14
0

Zusammenfassung der Ressource

Seite 1

Induction is a powerful way of proving known results.

Method Let P˅n be the statement to be proved Assume that the result works for n=k i.e. P˅k is true Then show the result works for n=k+1 Show the result works for n=1 i.e. P˅1 is true

NB: If P˅k is divisible by n ⇒ P˅k=nxADo not expand brackets in algebra unless absolutely necessary - Look for common factors first!

Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Maths GCSE - What to revise!
livvy_hurrell
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell
Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
GCSE Maths: Geometry & Measures
Andrea Leyden
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan
New GCSE Maths
Sarah Egan