Erstellt von Ulises Yo
vor etwa 6 Jahre
|
||
\(\frac{2}{3}\) =>
3\(\frac{1}{2}\) =>
\(\frac{2}{3} + \frac{3}{5}\ – \frac{3}{4}\) =
= \(\frac{2·5·4+3·3·4–3·3·5}{3·5·4}\) =
= \(\frac{40+36–45}{60}\) = \(\frac{31}{60}\)
\(\frac{2}{3}\)x\(\frac{3}{5}\) =>
\(\frac{2}{3}\):\(\frac{3}{5}\) =>
\(2^3\) =>
2,07 x \(10^6\) =
6,7 x \(10^{-6}\) =
\(\sqrt {16}\) =
\(\sqrt {200}\) \(\approx\) 14
\(\sqrt[i]{R}\) = r, rd
2,3454545... =>
2,3\(\stackrel{\frown}{45}\)
\(\mathbf{texto·en·negritas}\)
Arco: 2,3\(\overparen{45}\)
Arco, periódico: 2,3\(\stackrel\frown{45}\)
Segmento: 2,3\(\overline{457}\)
Circunflejo largo: 2,3\(\widehat{457}\)
Doble flecha: \(\overleftrightarrow{AB}\)
\(\overline{X I V} DC LXX IX\) = 14.679
Área Círculo : \(\pi\) × \(r^2\) => π ·r²
Potencias, Límites y otras fórmulas
lal2 [1^2]
\(\lim_{x to infty} exp(-x) = 0\)
\(\a bmod b\)
[x equiv a ]
[pmod b]
\(\pi\)
[k_{n+1} = n^2 + k_n^2 – k_{n-1}]
Paréntesis
[( a )]
[ [ b ]]
[ { c }]
[ | d |]
[ | e |]
[langle f rangle]
[lfloor g rfloor]
[lceil h rceil]
[ ulcorner i urcorner]
\(\pi\)
\(\alpha\)