IWKZ Tutorium
Quiz von , erstellt am more than 1 year ago

Aufnahmeprüfung Studienkolleg Mathematik Quiz am Ableitung (Hard), erstellt von IWKZ Tutorium am 09/06/2021.

1
0
0
IWKZ Tutorium
Erstellt von IWKZ Tutorium vor mehr als 3 Jahre
Schließen

Ableitung (Hard)

Frage 1 von 3

1

Geben Sie die Ableitung von \( x^2 \ln(\frac{4x^2}{9}) \)

Wähle eine der folgenden:

  • \[ f'(x) = 2x( \ln(\frac{4x^2}{9}) + 1 ) \]

  • \[ f'(x) = 2x \ln( \frac{4x^2}{9} ) + \frac{9}{4x^2} \]

  • \[ f'(x) = \ln( \frac{4x^2}{9} ) + 1 \]

  • \[ f'(x) = x( \ln(\frac{4x^2}{9}) + 1 ) \]

Erklärung

Frage 2 von 3

1

Geben Sie die Ableitung von \( (x-4)e^{x^2 + 2x + 1} \)

Wähle eine der folgenden:

  • \[ f'(x) = (2x^2 - 6x - 7)e^{x^2 + 2x + 1} \]

  • \[ f'(x) = e^{x^2 + 2x + 1} \]

  • \[ f'(x) = (2x + 2)e^{x^2 + 2x + 1} \]

  • \[ f'(x) = (2x^2 - 6x - 8)e^{x^2 + 2x + 1} \]

Erklärung

Frage 3 von 3

1

Geben Sie die Ableitung von \( \frac{e^{x^2} (x-2)^2}{2x^2} \)

Wähle eine der folgenden:

  • \[ f'(x) = \frac{e^{x^2} (x-2) [x^3 - 2x^2 + 2]}{x^3} \]

  • \[ f'(x) = \frac{2e^{x^2}}{3x^2} \]

  • \[ f'(x) = \frac{4xe^{x^2}}{3x^2} \]

  • \[ f'(x) = \frac{2e^{x^2} (x-2)}{x^3} \]

Erklärung