Bestimmen Sie das Integral von Funktionen:
\(f=\dfrac{4}{x} \)
\(g=2x^3 +4x+5x^{-2} \)
\(h=\sin{2x} \)
\(\int f \ dx=\) ❌ \(,\int g \ dx=\) ❌ \(,\int h \ dx=\) ❌
Klicke und ziehe, um den Text zu vervollständigen.
\(4\ln(x) +c\)
\(4\ln(x) +c\)
\(\ln(\dfrac{4}{x}) +c\)
\(\ln(\dfrac{4}{x}) +c\)
\(\ln(4x) +c\)
\(\ln(4x) +c\)
\(\dfrac{1}{2}x^4+2x^2-\dfrac{5}{x}+c\)
\(\dfrac{1}{2}x^4+2x^2-\dfrac{5}{x}+c\)
\(\dfrac{1}{2}x^4 +2x^2 -5x^{-3} +c\)
\(\dfrac{1}{2}x^4 +2x^2 -5x^{-3} +c\)
\(\dfrac{1}{2}x^4+2x^2 +\dfrac{5}{x}+c\)
\(\dfrac{1}{2}x^4+2x^2 +\dfrac{5}{x}+c\)
\(-\dfrac{1}{2}\cos(2x) +c\)
\(-\dfrac{1}{2}\cos(2x) +c\)
\(\dfrac{1}{2}\cos(2x) +c\)
\(\dfrac{1}{2}\cos(2x) +c\)
\(-\dfrac{1}{2}\cos(x) +c\)
\(-\dfrac{1}{2}\cos(x) +c\)