Frage 1
Frage
'n Spesiale lotery word gehou met koshuis studente wat in 'n luukse kamer sal kan bly vir 'n jaar. Daar is 100 derdejaar, 150 tweedejaar en 200 eerstejaar studente. Die derdejaars se name word 3 keer, tweedejaars 2 keer en eerstejaars 1 keer geplaas. 'n Naam word willekeurig gekies. Wat is die waarskynlikheid dat 'n derdejaar student se naam gekies word?
A special lottery is held with hostel students who will be able to stay in a luxury room for a year. There are 100 third year, 150 second year and 200 first year students. The third year names are placed 3 times, second years 2 times and first years 1 time. A name is chosen at random. What is the probability of a third-year student's name being chosen?
Antworten
-
\(\frac{1}{8}\)
-
\(\frac{2}{7}\)
-
\(\frac{2}{9}\)
-
\(\frac{3}{8}\)
Frage 2
Frage
Die volgende toon middag temperature in Durban vir een week:
Maandag: 30 Dinsdag: 33 Woensdag: 32 Donderdag: 33 Vrydag: 29 Saterdag: 33 Sondag:31
As m die mediaan, f die modus en g die gemiddeld voorstel, watter bewering is waar:
The following shows afternoon temperatures in Durban for one week:
Monday: 30 Tuesday: 33 Wednesday: 32 Thursday: 33 Friday: 29 Saturday: 33 Sunday: 31
If m represents the median, f the mode and g the average, which statement is true:
Frage 3
Frage
Beskou die skets: In die skets is sinA=
Consider the sketch: In the sketch, sinA =
Antworten
-
\(\frac{asinB}{c}\)
-
\(\frac{bsinB}{a}\)
-
\(\frac{asinB}{b}\)
-
\(\frac{asinC}{b}\)
Frage 4
Frage
'n Bedrag word verhoog met 10%, en toe weer met 10%. Die totale verhoging is:
An amount is increased by 10%, and then again by 10%. The total increase is:
Frage 5
Frage
As \(-x<-y\), met \(x\) en \(y\) positiewe heelgetalle, watter bewering is waar:
If\(-x<-y\), with\(x\) and \(y\) are positive integers, which statement is true:
Antworten
-
\(x<y\)
-
\(x+y<0\)
-
\((-x)^2<(-y)^2\)
-
\((-x)^3<(-y)^3\)
Frage 6
Frage
Gegee \(xy=8, xz=16\) en \(yz=32\). Dan is \(x+y+z=\)
Given\(xy=8, xz=16\) and \(yz=32\). Then \(x+y+z=\)
Frage 7
Frage
As \(f(x)=-\frac{1}{x}+1\) en \(g(x)=1-x\), dan is \(f(g(x))=\)
If\(f(x)=-\frac{1}{x}+1\) and \(g(x)=1-x\), then \(f(g(x))=\)
Antworten
-
\(\frac{1}{x}\)
-
\(\frac{x}{x-1}\)
-
\(\frac{2-x}{1-x}\)
-
\(\frac{x}{1-x}\)
Frage 8
Frage
Die gemiddeld van 10 getalle word bereken as 60. Daarna kom hulle agter dat die getal 73 per ongeluk ingelees is as 37. Die gemiddeld van die 10 getalle is dus:
The average of 10 numbers is calculated as 60. Then they find out that the number 73 was inadvertently entered as 37. The average of the 10 numbers is thus:
Frage 9
Frage
Die skets toon die grafiek van \(y=-a^x\). Die moontlike waardes van \(a\) is:
The sketch shows the graph of \(y=-a^x\). The possible values of \(a\) are:
Antworten
-
\(a<-1\)
-
\(-1<a<0\)
-
\(0<a<1\)
-
\(a>1\)
Frage 10
Frage
Die deursnee van 'n wiel is 3m. Dit maak een omwenteling in 2 sekondes. Hoeveel meter beweeg dit na 30 sekondes?
The diameter of a wheel is 3m. It makes one revolution in 2 seconds. How many meters does it move after 30 seconds?
Antworten
-
\(15\pi\)
-
\(30\pi\)
-
\(45\pi\)
-
\(60\pi\)
Frage 11
Frage
In die skets is sirkel met middelpunt A en AB ll CD. Dan is die verband tussen \(x\) en \(y\):
In the sketch, circle with center A and AB is CD. Then the connection between \(x\) and \(y\):
Antworten
-
\(x+y=180^\circ\)
-
\(2y-x=180^\circ\)
-
\(2x=y\)
-
\(2y=x\)
Frage 12
Frage
'n Man ry \(\frac{x}{6}\) km in 20 minute. Hoeveel km sal hy in \(y\) minute ry?
A man drives \(\frac{x}{6}\) km in 20 minutes. How many km will he drive in\(y\ minutes?
Antworten
-
\(\frac{xy}{120}\)
-
\(\frac{10x}{3y}\)
-
\(\frac{10xy}{3}\)
-
\(\frac{120}{xy}\)
Frage 13
Frage
Die refleksie van die lyn \(y=-3x+4\) in die \(y\) -as is
The reflection of the line \(y=-3x+4\) in the\(y\) -axis is
Antworten
-
\(y=\frac{1}{3}x+4\)
-
\(y=\frac{1}{3}x-4\)
-
\(y=3x-4\)
-
\(y=3x+4\)
Frage 14
Frage
Waar moet die \(y\)-as getrek word sodat die volgende die grafiek van \(y=-sinx\) sal wees:
Where should the \(y\) axis be drawn so that the following will be the graph of \(y=-sinx\):
Frage 15
Frage
As ABC 'n driehoek is, watter stelling is waar: sin C=
If ABC is a triangle, which statement is true: sin C =
Antworten
-
sinA.cosB + sinB.cosA
-
sinA.cosB - sinB.cosA
-
sinA.cosA + sinB.cosB
-
sinA.cosA - sinB.cosB
Frage 16
Frage
Die 3 hoeke van 'n driehoek vorm 'n rekenkundige ry. Dan is die grootte van die middelste hoek =
The 3 angles of a triangle form an arithmetic sequence. Then the size of the middle angle =
Antworten
-
\(15^\circ\)
-
\(30^\circ\)
-
\(45^\circ\)
-
\(60^\circ\)
Frage 17
Frage
Die vergelyking van die raaklyn aan die sirkel \(x^2+y^2=1\) by die punt \(x=1\) is
The equation of the tangent to the circle\(x^2+y^2=1\) at the point \(x=1\) is
Antworten
-
\(y=1\)
-
\(x+y=1\)
-
\(x=1\)
-
\(y=x\)
Frage 18
Frage
Die som van die eerste 10 terme van die ry \(a; a+4; a+8;…\) is gelyk aan 50. Dan is \(a=\)
The sum of the first 10 terms of the sequence\(a; a+4; a+8;…\) is equal to 50. Then \(a=\)
Frage 19
Frage
Wat is die periode van \(2+cos3x\)?
What is the period of \(2+cos3x\)?
Antworten
-
\(720^\circ\)
-
\(180^\circ\)
-
\(120^\circ\)
-
\(1080^\circ\)
Frage 20
Frage
\(\frac{(x^2+1)(x^2-9)(x-\sqrt3)}{x-1}=0\) word gegee. Hoeveel rasionale wortels het die vergelyking?
\(\frac{(x^2+1)(x^2-9)(x-\sqrt3)}{x-1}=0\) is given. How many roots does the equation have?