Lista de Exercícios Retas

Beschreibung

Nessa atividade iremos trabalhar os conteúdos de retas e planos.
BOTE FÉ NA MATEMÁTICA
Quiz von BOTE FÉ NA MATEMÁTICA, aktualisiert more than 1 year ago
BOTE FÉ NA MATEMÁTICA
Erstellt von BOTE FÉ NA MATEMÁTICA vor etwa 2 Jahre
415
1

Zusammenfassung der Ressource

Frage 1

Frage
Marque a alternativa que fornece as equações paramétricas e simétricas da reta que passa pelo ponto A=(1, 2, 2) cujo vetor diretor é \(\vec{v} = (3, -1, 1)\).
Antworten
  • \(\begin{array}{l} x(t) = 1 + 3t\\ y(t) = 2 - t\\ z(t) = 2 + t \end{array}\); e \(\frac{x-1}{3} = \frac{y-2}{-1} = z-2\)
  • \(\begin{array}{l} x(t) = 1 + 3t\\ y(t) = 2 - t\\ z(t) = 2 + t \end{array}\); e \(\frac{x-1}{3} = \frac{y-2}{1} = z-2\)
  • \(\begin{array}{l} x(t) = 1 + 3t\\ y(t) = 2 - t\\ z(t) = 2 + t \end{array}\); e \(\frac{x+1}{3} = \frac{y-2}{-1} = z-2\)
  • \(\begin{array}{l} x(t) = 1 + 3t\\ y(t) = 2 +t\\ z(t) = 2 - t \end{array}\); e \(\frac{x-1}{3} = \frac{y-2}{-1} = z-2\)

Frage 2

Frage
Marque a alternativa que fornece as equações paramétricas e simétricas da reta que passa pelos pontos \(P_1 = (1, 2, 3)\) e \(P_2 = (5, 0, 6)\).
Antworten
  • \(\begin{array}{l} x(t) = 1 + 4t\\ y(t) = 2 -2t\\ z(t) = 3 + 3t \end{array}\); e \(\frac{x-1}{4} = \frac{y-2}{-2} = \frac{z-3}{3}\)
  • \(\begin{array}{l} x(t) = 1 + 4t\\ y(t) = 2 -2t\\ z(t) = 3 + 3t \end{array}\); e \(\frac{x+1}{4} = \frac{y-2}{-2} = \frac{z-3}{3}\)
  • \(\begin{array}{l} x(t) = 1 + 4t\\ y(t) = 2 +2t\\ z(t) = 3 + 3t \end{array}\); e \(\frac{x-1}{4} = \frac{y+2}{-2} = \frac{z-3}{3}\)
  • \(\begin{array}{l} x(t) = 1 + 4t\\ y(t) = 2 -2t\\ z(t) = 3 - 3t \end{array}\); e \(\frac{x-1}{4} = \frac{y-2}{2} = \frac{z-3}{3}\)

Frage 3

Frage
Marque a alternativa que fornece as equações paramétricas da reta \(x-1 = \frac{5y +4}{2}=-6z+9\).
Antworten
  • \(\begin{array}{l} x(t) = 1 + t\\ y(t) = -\frac{4}{5} +\frac{2}{5}t\\ z(t) = \frac{3}{2} -\frac{1}{6}t \end{array}\)
  • \(\begin{array}{l} x(t) = 1 + t\\ y(t) = -4 +2t\\ z(t) = \frac{3}{2} -\frac{1}{6}t \end{array}\)
  • \(\begin{array}{l} x(t) = 1 + 2t\\ y(t) = -\frac{4}{5} +\frac{2}{5}t\\ z(t) = \frac{3}{2} -\frac{1}{6}t \end{array}\)
  • \(\begin{array}{l} x(t) = 1 + t\\ y(t) = -\frac{4}{5} -\frac{2}{5}t\\ z(t) = \frac{3}{2} +\frac{1}{6}t \end{array}\)

Frage 4

Frage
Obtenha as equações simétricas da reta \(x=2-s\), \(y=4\), \(z=3s\).
Antworten
  • \(\frac{x-2}{-1} = \frac{z}{3}\); y=4.
  • \(\frac{x-2}{-1} =\frac{y-4}{1} \frac{z}{3}\)
  • \(\frac{x+2}{1} = \frac{z}{3}\); y=4.
  • \(\frac{x-2}{1} = \frac{z}{3}\); y=4.

Frage 5

Frage
Marque a alternativa que fornece um ponto e um vetor diretor da reta \(\begin{array}{l} x(t) = 1 -2t\\ y(t) =-5 + t\\ z(t) = 2 + 4t \end{array}\).
Antworten
  • P = (1, -5, 2) e \(\vec{v} = (-2, 1, 4)\)
  • P = (1, -5, 2) e \(\vec{v} = (-2, 3, 4)\)
  • P = (1, 5, 2) e \(\vec{v} = (-2, 1, 4)\)
  • P = (1, 5, 2) e \(\vec{v} = (2, 1, 4)\)

Frage 6

Frage
Determine as equações paramétricas e simétricas da reta que passa pela origem e é ortogonal às retas \(r_1: \begin{array}{l} x(t) = 2 + t\\ y(t) = 3 +5t\\ z(t) = 5 + 6t \end{array}\) e \(r_2: \begin{array}{l} x(t) = 1 + 3s\\ y(t) = s\\ z(t) = -7 + 2s \end{array}\)
Antworten
  • \(\begin{array}{l} x(t) = 4n\\ y(t) = 16n\\ z(t) = -14n \end{array}\)
  • \(\begin{array}{l} x(t) = 2n\\ y(t) = 16n\\ z(t) = 14n \end{array}\)
  • \(\begin{array}{l} x(t) = 4n\\ y(t) = 4n\\ z(t) = -14n \end{array}\)
  • \(\begin{array}{l} x(t) = 4n\\ y(t) = n\\ z(t) = -n \end{array}\)
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Qual plano GoConqr é o ideal para o meu caso?
Nathalia - GoConqr
Distâncias
Ana Fernandes
RETAS COMPLANARES
Isabel Garcez
Geometria Plana
Christyan David
Álgebra Vetorial
Felipe Martins8938
Lista de Exercícios Planos
BOTE FÉ NA MATEMÁTICA
Questões gerais de Geometria
Aldo Silva
Carreira militar.
kainiton hian
Geometria de Posição_1
birasumare
Álgebra Vetorial
Beatriz Silva
São funções?
Dulce Pedro