Zusammenfassung der Ressource
Frage 1
Frage
What is the formula for a Normal Approximation to the Binomial?
Antworten
-
X~Bin(n,p)
-
X~N(np,npq)
-
X~U(a,b)
Frage 2
Frage
What is the formula for the Normal Approximation to the Poisson?
Antworten
-
X~N(λ,λ)
-
X~Po(λ)
-
X~N(μ,σ^2)
Frage 3
Frage
A Continuity Correction must be used with both Binomial and Poisson.
Frage 4
Frage
When doing Continuity Corrections, standardising is not important.
Frage 5
Frage
For a Continuity Correction for a Normal Approx. to the Binomial, n must be greater than [blank_start]50[blank_end] and p must be between [blank_start]0.1 and 0.9[blank_end]
Antworten
-
50
-
30
-
100
-
0.01 and 0.09
-
0.05 and 0.15
-
0.1 and 0.9
Frage 6
Frage
Examples of standardising for Binomial:
P(7≤X≥9) → P([blank_start]6.5<X>9.5[blank_end])
P(5<X>8) → P([blank_start]5.5<X>7.5[blank_end])
Antworten
-
6.5<X>9.5
-
7.5<X>8.5
-
4.5<X>7.5
-
5.5<X>7.5
-
4.5<X>8.5
-
6.5≤X≥9.5
Frage 7
Frage
What must both values equal for a Continuity Correction for the Normal Approx. to the Poisson?
Frage 8
Frage
Examples of standardising for the Poisson:
P(X<34) → P(X[blank_start]<33.5[blank_end])
P(X[blank_start]>40[blank_end]) → P(X>40.5)
P(X=38) → P([blank_start]37.5<X>38.5[blank_end])
P(X[blank_start]≤64[blank_end]) → P(X<64.5)
P(X≥25) → P(X[blank_start]>24.5[blank_end])
Antworten
-
<33.5
-
<34.5
-
≥40
-
>41
-
>40
-
37.5≤X≥38.5
-
37.5<X>38.5
-
≤64
-
<64
-
≤65
-
>25.5
-
>24.5
-
≥24.5
-
≤33.5