Erstellt von Freddy Ulate Agüero
vor mehr als 10 Jahre
|
||
Frage | Antworten |
\[ \int x^n dx = \] | \[ \frac{x^{n+1}}{n+1} + C , n \neq -1 \] |
\[ \int a \, dx = \] | \[ ax + C \] |
\[ \int \frac{1}{x} = \] | \[ ln |x| + C \] |
\[ \int e^x dx = \] | \[ e^x + C \] |
\[ \int a^x dx = \] | \[ \frac{a^x}{\ln a} + C \] |
\[ \int \sin x \, dx = \] | \[ -\cos x + C \] |
\[ \int \cos x \, dx = \] | \[ \sin x + C \] |
\[ \int \tan x \, dx = \] | \[ - \ln |\cos x| + C \] |
\[ \int \cot \, dx = \] | \[ \ln |\sin x| + C \] |
\[ \int \sec x \, dx = \] | \[ \ln|\sec x + \tan x| + C \] |
\[ \int \csc x \, dx = \] | \[ \ln |\csc x - \cot x| + C \] |
\[ \int \csc^2 x \, dx = \] | \[ -\cot x + C \] |
\[ \int \sec^2 x \, dx = \] | \[ \tan x + C \] |
\[ \int \sec x \tan x \, dx \] | \[ \sec x + C \] |
\[ \int \csc x \cot x \, dx = \] | \[ - \csc x + C \] |
\[ \int \frac{1}{\sqrt{1-x^2}} dx = \] | \[ \arcsin x + C \] |
\[ \int \frac{1}{x^2+1} dx = \] | \[ \arctan x + C \] |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.