Machine Learning. Seaborn Exercises

Beschreibung

Machine Learning. Python Karteikarten am Machine Learning. Seaborn Exercises, erstellt von María Marchante am 13/06/2018.
María Marchante
Karteikarten von María Marchante, aktualisiert more than 1 year ago
María Marchante
Erstellt von María Marchante vor mehr als 6 Jahre
422
0

Zusammenfassung der Ressource

Frage Antworten
The Data We will be working with a famous titanic data set for these exercises. Later on in the Machine Learning section of the course, we will revisit this data, and use it to predict survival rates of passengers. For now, we'll just focus on the visualization of the data with seaborn: https://github.com/mwaskom/seaborn https://seaborn.pydata.org/
Recreate the plots below using the titanic dataframe. There are very few hints since most of the plots can be done with just one or two lines of code and a hint would basically give away the solution. Keep careful attention to the x and y labels for hints. Note! In order to not lose the plot image, make sure you don't code in the cell that is directly above the plot, there is an extra cell above that one which won't overwrite that plot!
joint plots
distplot
boxplot
swarmplot
countplot
heatmap ... rugplot pairplot
FacetGrid
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

ein kleines Informatik Quiz
AntonS
Web Analyse Klausur SoSe 2016
Tobias Lübke
Python. Exercises. MatplotLib I
María Marchante
Python. Pandas I
María Marchante
Grundlagen der Online-Zusammenarbeit
Dozent
Netzwerktechnik
DFairy
Netzwerkdienste
DFairy
Hardware- und Gerätetechnik
DFairy
Server-, Storage- und Rechenzentren
DFairy
Betriebssysteme und Software
DFairy
Das unbekannte Wesen: Computer
Stefan Schmid