Dérivées

Beschreibung

Karteikarten am Dérivées, erstellt von Leonard Euler am 20/12/2014.
Leonard Euler
Karteikarten von Leonard Euler, aktualisiert more than 1 year ago
Leonard Euler
Erstellt von Leonard Euler vor etwa 10 Jahre
23
0

Zusammenfassung der Ressource

Frage Antworten
\[\dfrac{d}{dx} c\] \[0\]
\[\dfrac{d}{dx} x\] \[1\]
\[\dfrac{d}{dx} x^2\] \[2x\]
\[\dfrac{d}{dx} x^3\] \[3x^2\]
\[\dfrac{d}{dx} x^k\] \[k\cdot x^{k-1}\]
\[\dfrac{d}{dx} \dfrac{1}{x}\] \[-\dfrac{1}{x^2}\]
\[\dfrac{d}{dx} \sqrt{x}\] \[\dfrac{1}{2\sqrt{x}}\]
\[(\lambda\cdot u)'\] \[\lambda\cdot u'\]
\[(u+v)'\] \[u'+v'\]
\[(u\cdot v)'\] \[u'\cdot v+u\cdot v'\]
\[\Big(\dfrac{1}{u}\Big)'\] \[-\dfrac{u'}{u^2}\]
\[\Big(\dfrac{u}{v}\Big)'\] \[\dfrac{u'\cdot v-u\cdot v'}{v^2}\]
\[(u\circ v)'\] \[(u' \circ v)\cdot v'\]
\[(\sqrt{u})'\] \[\dfrac{u'}{2\sqrt{u}}\]
\[(u^k)'\] \[k\cdot u^{k-1}\cdot u'\]
\[\dfrac{d}{dx} \sin{x}\] \[\cos{x}\]
\[\dfrac{d}{dx} \cos{x}\] \[-\sin{x}\]
\[\dfrac{d}{dx} \tan{x}\] \[1+\tan^2{x}=\dfrac{1}{\cos^2{x}}\]
\[(\sin{u})'\] \[u'\cdot \cos{u}\]
\[(\cos{u})'\] \[-u'\cdot \sin{u}\]
\[(\tan{u})'\] \[u'\cdot(1+\tan^2{u})=\dfrac{u'}{\cos^2{u}}\]
\[\dfrac{d}{dx} e^x\] \[e^x\]
\[\dfrac{d}{dx} \ln{x}\] \[\dfrac{1}{x}\]
\[(e^u)'\] \[u'\cdot e^u\]
\[(\ln{u})'\] \[\dfrac{u'}{u}\]
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Logarithmus
Kaja-Lotta
Politik von Bismarck
fio xxx
Einstufungstest Italienisch Niveau B1.1
SprachschuleAktiv
Zellzyklus
Nele Ramrath
The Commonwealth
Laura D
Oxford Academic Word List Sub1
torsten fab
Vetie - Pharma 2017
Fioras Hu
METH QUALI SS 2019
Caroline Hannah
Online-Quiz MS-1.3 Foliensatz 1
Bernd Leisen
Vetie Para Tropfpräparate
Kristin E
Vetie Milchhygiene 2018
Theresa Blaue