Dérivées

Beschreibung

Karteikarten am Dérivées, erstellt von Leonard Euler am 20/12/2014.
Leonard Euler
Karteikarten von Leonard Euler, aktualisiert more than 1 year ago
Leonard Euler
Erstellt von Leonard Euler vor fast 10 Jahre
21
0

Zusammenfassung der Ressource

Frage Antworten
\[\dfrac{d}{dx} c\] \[0\]
\[\dfrac{d}{dx} x\] \[1\]
\[\dfrac{d}{dx} x^2\] \[2x\]
\[\dfrac{d}{dx} x^3\] \[3x^2\]
\[\dfrac{d}{dx} x^k\] \[k\cdot x^{k-1}\]
\[\dfrac{d}{dx} \dfrac{1}{x}\] \[-\dfrac{1}{x^2}\]
\[\dfrac{d}{dx} \sqrt{x}\] \[\dfrac{1}{2\sqrt{x}}\]
\[(\lambda\cdot u)'\] \[\lambda\cdot u'\]
\[(u+v)'\] \[u'+v'\]
\[(u\cdot v)'\] \[u'\cdot v+u\cdot v'\]
\[\Big(\dfrac{1}{u}\Big)'\] \[-\dfrac{u'}{u^2}\]
\[\Big(\dfrac{u}{v}\Big)'\] \[\dfrac{u'\cdot v-u\cdot v'}{v^2}\]
\[(u\circ v)'\] \[(u' \circ v)\cdot v'\]
\[(\sqrt{u})'\] \[\dfrac{u'}{2\sqrt{u}}\]
\[(u^k)'\] \[k\cdot u^{k-1}\cdot u'\]
\[\dfrac{d}{dx} \sin{x}\] \[\cos{x}\]
\[\dfrac{d}{dx} \cos{x}\] \[-\sin{x}\]
\[\dfrac{d}{dx} \tan{x}\] \[1+\tan^2{x}=\dfrac{1}{\cos^2{x}}\]
\[(\sin{u})'\] \[u'\cdot \cos{u}\]
\[(\cos{u})'\] \[-u'\cdot \sin{u}\]
\[(\tan{u})'\] \[u'\cdot(1+\tan^2{u})=\dfrac{u'}{\cos^2{u}}\]
\[\dfrac{d}{dx} e^x\] \[e^x\]
\[\dfrac{d}{dx} \ln{x}\] \[\dfrac{1}{x}\]
\[(e^u)'\] \[u'\cdot e^u\]
\[(\ln{u})'\] \[\dfrac{u'}{u}\]
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

05_Gesellschaft mit beschränkter Haftung (GmbH)
Stefan Kurtenbach
Kleines Latein-Quiz
anna.grillborzer0656
Zeiten Englisch
anna.grillborzer0656
Öff. Recht - Streitigkeiten Staatshaftungsrecht
myJurazone
IKA-Theoriefragen Serie 04 (15 Fragen)
IKA ON ICT GmbH
Die Zelle
Tahir Celikkol
The United Kingdom - Identity and Immigration
Laura D
GPSY PEPS
Simon Wirsching
Grundzüge Soziologischer Theorien - Rudolf Richter 2017 - Version 2
Markus Gio
Vetie Viro 2014
Annika G
MS-1.3: Folienpaket 5
Stephanie Hendricks