Erstellt von Lauren Clark
vor mehr als 9 Jahre
|
||
Frage | Antworten |
Critical temperature | Temperature at which critical point occurs T=deltaE/kb |
Intermolecular potential per unit volume | U=1/2 p^2INTEGRAL(gV) g is radial distribution function |
Flux | J = 1/4 n <c> n number density |
Pressure of a gas (think flux) | P=1/3 nm <c^2> |
Pressure difference in gas | P=Po e^(-mgh/kbT) |
Maxwell-Boltzmann distribution function | 1/N dN/dc = 4pic^2 (m/2pikbT)^3/2 e^(-mc^2/2kbT) |
Most probable speed of a molecule | c* = SQRT(2kbT/pim) |
Mean speed | <c> = SQRT(8kbT/pim) |
Root mean square speed | SQRT(<c^2>) = SQRT(3kT/m) |
Mean free path | mfp=1/pio^2n o diameter of molecule, radius of cylinder swept out by particle |
Effusion relation pressure and temperature | P1/P2=SQRT(T2/T1) |
Fick's Law | For diffusion J=-D dn/dz |
Diffusion coefficient | D= -mfp/3 <c> dn/dz |
Viscosity | VISC=1/3 m mfp n <c> n number of molecules |
Thermal conductivity | k = 1/3 n mfp (cv) cv = heat capacity constant v |
First law of thermodynamics | deltaU = Q + W |
Work done on gas at constant pressure | W = -P(Vf-Vi) |
Work done in a reversible isothermal expansion | W=-NRTln(Vf/Vi) |
Heat capacity at constant V | dQ/dT=dU/dT |
Heat capacity constant P | dQ/dT |
Enthalpy | H=U+PV |
Spacing between rotational energy levels | e=hbar^2/4pi^2I I moment of inertia |
Relationship between cV and cP | cP=Cv +(dU/dV +P)dV/dT |
Change in volume due to isobaric thermal expansivity | deltaV=B V delta T |
Change in volume due to isothermal compressibility | k+ - 1/V (dV/dP) |
Ratio of cP and cV | -V/P dP/dV = gamma |
Relationship between P and V for adiabatic expansion | P1V1^gamma = P2V2^gamma... etc Gamma is the ratio of cP to cV |
Cooling due to adiabatic expansion | T2/T1 = (V1/V2)^gamma-1= (P2/P1)^((gamma - 1)/gamma) |
Entropy | dS=dQ/T = dH/T |
2nd law of thermodynamics | delta S(univ) >/ 0 |
Gibb's Free Energy | G=H-TS |
Master Equations | dH=TdS+vdP dG =VdP - SdT |
Clapeyron Equation | dP/dT = Svap-Ssol/Vvap-Vsol |
Clasius Clapeyron Equation | ln(P2/P1) = - deltaH/R (1/T2-1/T1) |
Latent heat of vaporisation | L= deltaHvap |
Van der Waals equation | P=RT/V-b - a/V^2 v = volume of one mole |
b in Van der Waals Equation | b=4Nav=2pi/3 Na o^3 v = volume of one molecule o = diameter of one molecule |
Missing neighbours of a molecule approaching a wall | n-no = - ano^2/kT a = alpha = some constant |
Critical temperature of liquid | Tc=8a/27Rb = 26 deltae/27k a and b are constants from the Van der Waals equation n |
Keesom interaction | U = -2u1^2u2^2/3kT(4piEo)^2r^6 ui = dipole moment r = distance between two charges in dipole |
Induced dipole moment | u = aE a = alpha = polarizability |
Lennard Jone's Potential | U = 4e((o/r)^12 - (o/r)^6) o = distance at which U is zero r = distance between particles |
Surface free energy | eNbrok/2ro^2 = NbrokL/qNa(pNa/M)^2/3 ro = average seperation Nbrok = number of neighbours lost e = depth of Lennard Jones potential L = latent heat q = number of nearest neighbours |
Latent heat of vapourisation | L = 1/2 qNae q = number of near neighbours |
Young's Equation | gamma(sv) = gamma(sl) +gamma(l)costheta found by decomposing the surface free energies at a contact angle between liquid and a solid |
Pressure difference across curved interface | P1=P2 = gamma(1/R1+1/R2) |
Bernoullis Equation | P1/p1 +1/2 v1^2 +phi1 = P2/p2 +1/2 v2^2+phi2 p = density phi = gz |
Stoke's Equations | Viscous force F = 6pinRv n = viscosity R = radius |
Reynolds Number | Re = pvR/n n viscosity p density R radius |
Ionic pair potential | U = 1.481e[+/- (o/r)+(o/r)^9] |
Packing Fraction | PF = NpVp/Vuc |
Plane spacing | d = a/SQRT[h^2+k^2+l^2)] h,k,l miller indices |
Lattice energy of Van der Waal solid | Ut<2eNa[12(o/r1)^12 - 14.05(o/r1)^6] |
Ionic lattice energy | Ut=0.741eNa[6(o/r1)^9-1.75(o/r1)] |
Braggs Law Cubic System | (sin0)^2 = lambda^2(h^2+k^2+l^2)/4a^2 |
Einstein model for specific heat | Cv = 3R(0e/T)^2 e^(0e/T) / [(e^(0/T)-1)^2] 0e = hbarw/k |
Debye frequency | w = k0/hbar 0 = debye temp |
Young's Modulus | 72e/ro^3 e = strain ro = distance |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.