Hex 1: Hex & Denary

Beschreibung

GCSE Computer Science (Binary Logic) Karteikarten am Hex 1: Hex & Denary, erstellt von Lyssa Badger am 27/05/2015.
Lyssa Badger
Karteikarten von Lyssa Badger, aktualisiert more than 1 year ago
Lyssa Badger
Erstellt von Lyssa Badger vor mehr als 9 Jahre
18
1

Zusammenfassung der Ressource

Frage Antworten
Hex Number System Base 16 Uses 'Numbers': 0 1 2 3 4 5 6 7 8 9 A B C D E F
A-F Represent? A =10 B = 11 C = 12 D = 13 E = 14 F = 15
Why use Hex? Hex codes are used in many areas of computing to simplify binary codes. Computers do not use hexadecimal - it is used by humans to shorten binary to a more easily understandable form.
Convert Denary to Hex E.g. 161 to Hex Step 1: Work out how many 16's can fit into the denary number. (e.g 16 x10 = 160) Step 2: Work out the remainder (e.g. 161-160 = 1) Step 3: So far we have an answer of 10|1 but we need to use the Hex number system 10 = A 1 = 1 Our answer is A|1 161 = A1
100 to Hex 16 * 6 = 96 100 - 96 = 4 Answer = 6|4
16 to Hex 16 * 1= 1 16 - 16 = 0 Answer = 1|0
Convert Hex to Denary E.g. AB Step 1: Multiple the first digit by 16 (E.g. A * 16 which is 10 * 16 = 160) Step 2: Add the second digit to the total (e.g. 160 + B which is 160 + 11 = 171) Step 3: AB = 171
16 to Denary 1 * 16 = 16 16 + 6 = 22 16 Hex = 22
F3 F * 16 = 15 * 16 = 240 240 + 3 = 243 F3 Hex = 243
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Computing Hardware - CPU and Memory
ollietablet123
SFDC App Builder 2
Parker Webb-Mitchell
Intake7 BIM L1
Stanley Chia
Data Types
Jacob Sedore
Software Processes
Nurul Aiman Abdu
Design Patterns
Erica Solum
CCNA Answers – CCNA Exam
Abdul Demir
Abstraction
Shannon Anderson-Rush
Spyware
Sam2
HTTPS explained with Carrier Pigeons
Shannon Anderson-Rush
Data Analytics
anelvr