Erstellt von bonsavoir.be
vor mehr als 9 Jahre
|
||
Frage | Antworten |
\[\int f'(x) f(x)^k dx \] | \[\frac{f(x)^{k+1}}{k+1} + C\] |
\[\int cos(x) sin² (x) dx \] | \[\frac{sin³(x)}{3} + C\] |
\[\int sin(x) cos² (x) dx \] | \[- \frac{cos³(x)}{3} + C\] |
\[\int a e^{ax} dx \] | \[ e^{ax} + C\] |
\[\int \frac{[ln(x)]^a}{x} dx \] | \[ \frac {[ln(x)]^{a+1}}{a+1} + C\] |
\[\int \frac{tg^2(x)}{cos^2(x)} dx \] | \[ \frac {tg^3(x)}{3} + C\] |
\[\int f'(x) f(x) e^{\frac {f^2(x)}{2}} dx \] | \[ e^{\frac {f^2(x)}{2}} + C \] |
\[\int cos(x) e^{sin(x)}dx \] | \[ e^{sin(x)} + C \] |
\[\int x e^{\frac {x^2}{2}} dx \] | \[\int x e^{\frac {x^2}{2}} dx \] |
\[\int \frac{tg^2(x)}{cos^2(x)} e^{\frac {tg^3(x)}{3}} dx \] | \[ e^{\frac {tg^3(x)}{3}} + C \] |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.