Erstellt von declanlarkins
vor fast 11 Jahre
|
||
Frage | Antworten |
sec \(\theta\) = | \(\frac{1}{cos\theta}\) |
cosec\(\theta\) = | \(\frac{1}{sin\theta}\) |
cot\(\theta\) = | \(\frac{1}{tan\theta}\) |
\(sec^2\)\(\theta\) = | 1 + \(tan^2\)\(\theta\) |
\(cosec^2\)\(\theta\) = | 1 + \(cot^2\)\(\theta\) |
sin2A = | 2sinAcosA |
cos2A = | \(cos^2\)A - \(sin^2\)A |
cos2A = | 2\(cos^2\)A - 1 |
cos2A = | 1 - 2\(sin^2\)A |
tan2A = | \(\frac{2tanA}{1-tan^2A}\) |
Differentiate y=\(e^{kx}\) | \(\frac{dy}{dx}\) = k\(e^{kx}\) |
\(\frac{1}{cos\theta}\) = | sec \(\theta\) |
\(\frac{1}{sin\theta}\) = | cosec\(\theta\) |
\(\frac{1}{tan\theta}\) = | cot\(\theta\) |
1 + \(tan^2\)\(\theta\) = | \(sec^2\)\(\theta\) |
1 + \(cot^2\)\(\theta\) = | \(cosec^2\)\(\theta\) |
2sinAcosA = | sin2A |
\(cos^2\)A - \(sin^2\)A = | cos2A |
2\(cos^2\)A - 1 = | cos2A |
1 - 2\(sin^2\)A = | cos2A |
\(\frac{2tanA}{1-tan^2A}\) = | tan2A |
\(\int\)k\(e^{kx}\)\(dx\) | y=\(e^{kx}\) |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.