Erstellt von Tech Wilkinson
vor fast 11 Jahre
|
||
Frage | Antworten |
sine rule | \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\) |
cosine rule | \(a^2 = b^2 + c^2 - 2 b c \cos A\) |
area of triangle | Area \(= \frac{1}{2} b c \sin A\) |
remainder when polynomial \(f(x)\) divided by \((x-a)\) | \(f(a)\) |
\(a^b=c\) | \(b=\log_ac\) |
\(\log_ax+\log_ay\) | \(\log_a(xy)\) |
\(\log_ax-\log_ay\) | \(\log_a\big(\frac{x}{y}\big)\) |
\(k\log_ax\) | \(\log_a(x^k)\) |
\(\tan\theta\) | \(\frac{\sin\theta}{\cos\theta}\) |
\(\cos^2\theta+\sin^2\theta\) | 1 |
\(\pi\) radians | \(180^\circ\) |
area of sector | A \( =\frac{1}{2}r^2\theta\) |
\(\int x^n dx\) (\(n \neq -1\)) | \(\frac{1}{n+1}x^{n+1}+c\) |
\(\int \Big( f'(x) + g'(x) \Big) dx\) | \(f(x) + g(x) + c\) |
area between curve, x-axis and points \(a\) \(b\) | \(\int\limits_a^b y dx \) (when \(y \ge 0\)) |
area between curve, y-axis and points \(c\) \(d\) | \(\int\limits_c^d x dy \) (when \(x \ge 0\)) |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.