Erstellt von Joshua Butterwor
vor mehr als 8 Jahre
|
||
Frage | Antworten |
Express \(\sinh{x}\) in terms of exponentials. | \[\sinh{x}=\frac{e^{x}-e^{-x}}{2}\] |
Express \(\cosh{x}\) in terms of exponentials. | \[\cosh{x}=\frac{e^{x}+e^{-x}}{2}\] |
Express \(\tanh{x}\) in terms of exponentials. | \[\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\] or \[\tanh x=\frac{e^{2x}-1}{e^{2x}+1}\] |
Express \(\cosh^{-1}{x}\) in terms of natural logs | \[\cosh^{-1}{x}=\ln({x+\sqrt{x^{2}-1}})\] |
Express \(\sinh^{-1}{x}\) in terms of natural logs | \[\sinh^{-1}{x}=\ln({x+\sqrt{x^{2}+1}})\] |
Express \(\tanh^{-1}{x}\) in terms of natural logs | \[\tanh^{-1}{x}=\frac{\ln(\frac{1+x}{1-x})}{2}\] |
Differentiate \(\cosh{x}\) | \[\frac{\partial \cosh{x}}{\partial x}=\sinh{x}\] |
Differentiate \(\sinh{x}\) | \[\frac{\partial \sinh{x}}{\partial x}=\cosh{x}\] |
Differentiate \(\tanh{x}\) | \[\frac{\partial \tanh{x}}{\partial x}=\sech^{2}{x}\] |
Differentiate \(\sinh^{-1}{x}\) | \[\frac{\partial sinh^{-1}{x}}{\partial x}=\frac{1}{\sqrt{1+{x}^2}}\] |
Differentiate \(\cosh^{-1}{x}\) | \[\frac{\partial cosh^{-1}{x}}{\partial x}=\frac{1}{\sqrt{{x}^{2}-1}}\] |
Differentiate \(\tanh^{-1}{x}\) | \[\frac{\partial tanh^{-1}{x}}{\partial x}=\frac{1}{1-{x}^{2}}\] |
Integrate \(\tanh^{-1}{x}\) | \[\int \tanh x = \ln{\cosh{x}}\] |
What is Osborne's Rule? | The idea that trigonometric equations can be changed to hyperbolic equations by exchanging the trig functions for their hyperbolic counterparts and changing the sign wherever there is a product of two sines. |
Use Osborne's rule to find the corresponding hyperbolic equation to: \[\tan^{2}{x}+1\equiv \sec^{2}{x}\] | \[1=sech^{2}{x} + \tanh^{2}{x}\] |
Use Osborne's rule to find the corresponding hyperbolic equation to: \[\cot^{2}{x}+1\equiv \cosec^{2}{x}\] | \[cosech^{2}{x}=1+ \coth^{2}{x}\] |
What is the integral of\( f'(x)[f(x)]^{n}\) | \[\frac{1}{n+1}[f(x)]^{n+1}+c\] |
What is the integral of \(\frac{f'(x)}{f(x)}\) | \[\ln\left | f(x) \right |+c\] |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.