Proceso de diagonalización

Description

Proceso de diagonalización de matrices
christian cabascango
Flowchart by christian cabascango, updated more than 1 year ago
christian cabascango
Created by christian cabascango over 3 years ago
5
0

Resource summary

Flowchart nodes

  • Proceso de diagonalización
  • Matriz diagonalizable
  • Sea la matriz A perteneciente a una matriz real, A∈R. 
  • Se dice que A es diagonalizable es verdadera si la matriz A es semejante a una matriz diagonal que ∃P∈R.
  • Inversible tal que  P–1AP=DP–1AP=D diagonal.
  • Condiciones de diagonalización
  • La matriz A perteneciente a una matriz Real, A∈R, es diagonalizable si y sólo si A tiene n autovectores linealmente independientes.
  • Sean v1,v2,…,vn autovectores linealmente independientes de la matriz A∈Rn. Podemos construir una matriz P cuyas columnas sean dichos autovectores:
  • P es inversible porque sus columnas son linealmente independientes y por lo tanto tiene rango n (det(P)≠0).
  • Puede demostrarse que:  P–1AP=DP–1AP=D  donde D es una matriz diagonal cuyos elementos son los respectivos autovalores:
Show full summary Hide full summary

Similar

Matrices y Determinantes
Diego Santos
CÁLCULO MENTAL
JL Cadenas
Vectores: Definición, características y tipos
christian cabascango
Rango de una matriz. Método de Gauss
christian cabascango
Funciones - Test
sofialeone
Enseñando las matemáticas con el uso de las TICs
danilo2506
ORIGEN DE LOS LOGARITMOS
Hugo Fernando
Matrices y Determinantes
Victor Rodriguez
Circulo y circunferencia
jessica silveira
Notación Científica mapa mental
arojasaci17
Sistemas de ecuaciones lineales método cramer
Patricio Cáceres