La Ley de los Grandes Números
En el famoso libro de Jacob Bernoulli, Aos Conjectandi, aparece un teorema de importancia cardinal para la Teoría de Probabilidades, comúnmente llamado Teorema de Bernoulli, y también conocido como Ley de los grandes números, nombre que le fue dado por el matemático francés, Simeon Poisson (1781-1840). Este teorema fue el primer intento para deducir medidas estadísticas a partir de probabilidades individuales. El tiempo empleado para escribir este libro no fue perdido, si consideramos la importancia central del resultado. Matemáticos, científicos y filósofos han dedicado más de veinte años examinando y discutiendo el significado exacto del Teorema y su alcance en aplicaciones estadísticas.
El teorema es más sencillo de exponer. De hecho, cuando se ve por primera vez, uno se pregunta cómo Bernoulli pudo preocuparse durante veinte años y cómo ha promovido tantas controversias posteriormente. El hecho es, que es un conjunto de sutilezas y artificios; cuando más lo piensa uno, más complicado lo ve. Bernoulli tuvo un trabajo loco montando el engranaje, lo cual lo distrajo de prever los embrollos lógicos y filosóficos que planteaba. “Si la probabilidad de un suceso es p, y si se hace un número infinito de pruebas, la producción de aciertos es, sin duda p”. Aquí, tienen una simple exposición del Teorema de Bernoulli: si la probabilidad de que ocurra un hecho en una prueba única es p, y si se hacen varias pruebas, inmediatamente y en las mismas condiciones, la proporción más probable de que ocurran los hechos en el número total de pruebas es también p; aún más, la probabilidad que la porción en cuestión difiere de p en menos que una cantidad dada, por pequeña que sea, aumenta al mismo tiempo que aumenta el número de pruebas.
Tirando al aire su discreción matemática “un estudioso del sujeto llega a esta definición correcta”.
Otra definición más válida: “En un conjunto bastante amplio de “a” elementos es casi seguro que la frecuencia relativa de “b” elementos se aproximará a la probabilidad de un elemento “a” estando “b” dentro de cualquier grado de aproximación deseada”. Aquí la frase “casi seguro” ha de entenderse como un medio conveniente para decir que hay una probabilidad tan cercana como queramos a 1.
Como una demostración de la importancia de la Ley de los grandes número en asuntos prácticos es suficiente mencionar los Seguros.
Supongamos que la probabilidad de que un hombre de cierta edad y constitución muera en el transcurso de un año es 1/10. si tal individuo decide asegurarse, ésta es la fracción que ha de tener en cuenta y usar cuando tome su decisión. Pero la compañía de seguros que se ofrece a cubrir el riesgo de su muerte en este período tiene en consideración otra probabilidad que se deriva de esta probabilidad. Si hay un gran número de personas de las mismas características, que aseguran sus vidas en esa compañía, hay una probabilidad muy elevada de que la compañía no tenga que pagar a más de, aproximadamente, un décimo de las pólizas. Si, por consiguiente, la compañía carga en cada caso una prima de más de un décimo del total de la póliza, es muy probable que tendrá bastante superávit después de pagar todos los derechos, para cubrir los gastos administrativos y distribuir un dividendo a sus accionistas. Mientras mayor sea el número de personas que se asegura en la compañía, mayor es la probabilidad de que las finanzas de la compañía sean sanas siempre que las primas estén calculadas como acabamos de decir. Esta es la consideración fundamental que distingue el negocio de una compañía de seguros de una apuesta.