Created by BRUNO SALVADOR SOLIS DIAZ
about 3 years ago
|
||
Question | Answer |
(tan(x))' = ? | (tan(x))' = sec^2(x) |
(cot(x))' = ? | (cot(x))' = - csc^2(x) |
(sec(x))' = ? | (sec(x))' = sec(x)tan(x) |
(csc(x))' = ? | (csc(x))' = - csc(x)cot(x) |
∫tan(x)dx = ? | ∫tan(x)dx = - ln|cos(x)| + C |
∫cot(x)dx = ? | ∫cot(x)dx = ln|sen(x)| + C |
∫sec(x)dx = ? | ∫sec(x)dx = ln|sec(x) + tan(x)|+ C |
∫csc(x)dx = ? | ∫csc(x)dx = - ln|csc(x) + cot(x)|+ C |
∫sec(x)tan(x)dx = ? | ∫sec(x)tan(x)dx = sec(x) + C |
∫(1/1+x^2)dx = ? | ∫(1/1+x^2)dx = arctan(x) + C |
∫(f'(x)/f(x))dx = ? | ∫(f'(x)/f(x))dx = ln|f(x)| + C |
Want to create your own Flashcards for free with GoConqr? Learn more.