Created by louise.chardon94
over 8 years ago
|
||
Question | Answer |
pour les symboles compliqués | |
P(A U B) = | = P(A) + P(B) |
P(IA) = | = 1 - P(A) |
P(A U B) = | = P(A) + P(B) - P(A II B) |
E(aX + b) = | = aE(X) + b |
V(aX + b) = | = a puiss (2)V(X) |
PA(B) = | = (P(A II B)) / (P(A)) |
Evénement indépendants ssi P(A II B) = | = P(A) x P(B) Lorsque P(A) diff 0 et PA(B) = P(B) |
Schema Bernoulli Loi Binomial | P(X=k) = (n k) x p puiss (k) (1 - p) puiss (n-k) B (n,p) |
E(X) = V(X) = o(X) = | = np = np(1-p) = rac de (np(1-p)) |
densité | nv chapitre |
E(X) = | = S [ ; ] t f(t) dt = (a + b) / 2 |
f(t) = | = 1/(b-a) = (d-c)/(b-a) |
loi expo | f(t) = Ye puiss (-Yt) |
loi sans mémoire | PX>t(X>t+h) = P(X>h) |
E(X) = | = 1/Y |
Demi-vie | t1/2 = ln2/Y |
loi normal | f(x) = 1/ (rac de (2pi)) X e puiss (-xcarré/2) |
normalcdf --> cherche probe invNorm --> cherche u dans P(x=u)=2 | (lower,upper, moyenne, écart type) (2,moyenne, écart type) |
P(-1<X<1) P(-2<X<2) P(-3<X<3) | = 0,683 = 0,954 = 0,997 |
variable = | = (X - moyenne) / écart type |
Want to create your own Flashcards for free with GoConqr? Learn more.