Ley de composición externa

Description

Mind Map on Ley de composición externa, created by jorgenaranjo1989 on 19/10/2014.
jorgenaranjo1989
Mind Map by jorgenaranjo1989, updated more than 1 year ago
jorgenaranjo1989
Created by jorgenaranjo1989 about 10 years ago
465
0

Resource summary

Ley de composición externa
  1. En símbolos
    1. es ley externa en A con operadores en B ⇔ Bx A → A es decir, si b B ∈ y a A ∈ la imagen del par (b ; a) = b ∗ a ∈ A
      1. Según las propiedades que deban satisfacer estas leyes de composición, se tienen los distintos tipos de estructuras ó sistemas axiomáticos.
        1. Monoide
          1. El par (A , ∗ ) donde A es un conjunto no vacío dotado de una operación ó ley de composición interna ∗ se denomina monoide.
            1. Ejemplos de monoides
              1. ( N , + ) , ( Z , + ) , ( Q , + ) , son monoides. ( N , - ) no es un monoide porque la sustracción no es ley de composición interna en N. ( N , ∗ ) donde ∗ está definido como a ∗ b = máx.{a , b} es un monoide.
          2. Semigrupo
            1. Un monoide asociativo se denomina semigrupo.
              1. Si la ley de composición interna también es conmutativa se llama semigrupo conmutativo. Si existe el elemento neutro se dice que es un semigrupo con unidad ó semigrupo con identidad. El elemento neutro de llama identidad.
                1. Ejemplos de semigrupos ( N , + ) es un semigrupo conmutativo sin elemento neutro. ( N 0 , + ) es un semigrupo conmutativo con elemento neutro, el 0. ( N , • ) es un semigrupo conmutativo con elemento neutro ó identidad igual a 1.
            2. Grupo
              1. Sea el par (A , ∗ ) , donde A es un conjunto no vacío dotado de una ley de composición interna binaria
                1. (A , ∗ ) es un grupo ó se define sobre A una estructura de grupo sí: a) ∗ es asociativa. Es decir a ∀ , b ∀ , c ∀ : a, b, c ∈ A ⇒ ( ) ( ) a b c a b c ∗ ∗ = ∗ ∗ b) ∗ posee elemento neutro en A. Es decir e A ∃ ∈ / a ∀ , si a A ∈ ⇒ a e e a a ∗ = ∗ = c) Todo elemento de A es invertible en A respecto de ∗ . Es decir a A ∀ ∈ , a ´ A ∃ ∈ / a a ´ a ´ a e
              2. Grupo Abeliano ó Grupo conmutativo
                1. es cuando además de ser un grupo, d) ∗ es conmutativa. Es decir a ∀ , b ∀ : a, b ∈ A a b b a ⇒ ∗ = ∗ Si G = (A , ∗ ) es un grupo, se dice que es un grupo finito si el conjunto A es finito y su cardinal se llama orden del grupo.
                  1. Ejemplos 1) El par ( Z , ∗ ) donde Z es el conjunto de los números enteros y ∗ es una operación definida como a ∗ b = a + b + 3 forma un grupo abeliano. Comprobación: ∗ es una ley de composición interna en Z pues si a y b ∈ Z , a + b + 3 ∈ Z ∗ es asociativa pues ( ) a b c ∗ ∗ = (a + b +3) ∗ c = a + b +3 + c +3 = a + b + c + 6 y ( ) a b c ∗ ∗ = a ∗ (b + c + 3) = a + b + c + 3 + 3 = a + b + c + 6 ∗ tiene elemento neutro e = –3 , pues a A ∀ ∈ , a ∗ e = a entonces a + e +3 = a ⇒ e = –3 y e ∗ a = a entonces e + a + 3 = a ⇒ e = –3 tiene inverso a , a / a a e ′ ′ ∀ ∃ ∗ = , en nuestro caso a a′ ∗ = –3 ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a derecha a a 3 ′ ∗ = − ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a izquierda ∗ es conmutativa pues a b ∗ = a + b + 3 = b + a + 3 = b a
                    1. Otros ejemplos: 1 ) ( Z , + ) ; ( Q , + ) ; ( R , + ) y ( C , + ) Son grupos abelianos . También se llaman grupos aditivos debido a la operación aditiva. 2 ) ( N , + ) No es grupo. No tiene neutro ni inverso de cada elemento. 3 ) ( N 0 , + ) No es grupo. Tiene neutro, el 0 , pero no tiene inverso aditivo. 4 ) ( Q , • ) No es grupo, el 0 no tiene inverso multiplicativo. 5 ) ( R , • ) No es grupo, el 0 no tiene inverso multiplicativo. 6 ) ( Q – { 0 } , • ) y ( R – { 0 } , • ) Son grupos.
          Show full summary Hide full summary

          Similar

          Area, Volume & Perimeter Mind Map
          rory.examtime
          Spanish: Grammar 3.2
          Selam H
          MCAT Study Plan
          Alice McClean
          Biology AS Level UNIT 1
          Valentin Andrei
          Edexcel Additional Science Chemistry Topics 1+2
          hchen8nrd
          English Language Techniques
          lewis001
          FUNCTIONALIST ROLE OF EDUCATION
          ashiana121
          Making the Most of GoConqr Flashcards
          Sarah Egan
          Core 1.4 Developments in Modern and Smart Materials
          T Andrews
          Specific topic 7.7 Timber (tools/equipment/processes)
          T Andrews