Vectors in 2D

Description

Learn how to operate on 2D vectors.
Deleted user
Note by Deleted user, updated more than 1 year ago More Less
Darren Hunt
Created by Darren Hunt almost 6 years ago
Darren Hunt
Copied by Darren Hunt almost 6 years ago
0
0

Resource summary

Page 1

Vectors in 2D

Vectors have a direction and magnitude. They can be added geometrically or algebraically. Geometrically, they are plotted on a graph, drawn as an arrow, and added using the "tip-to-tail" method. Adding and subtracting vectors requires simple operations on the coordinates.

Vector Addition Add vectors as you would coordinates. Example: What is <5,2> + <-3,1>? Add the components: <5+(-3), 2+1> = <2,3>

Vector Subtraction Same as addition, but with - . Example: What is <4,2> - <1,4>? Subtract the components: <4-1,2-4> = <3,-2>   To subtract geometrically, add the negative of the vector, which goes in the opposite direction. "Tip-to-tip".

Scalar Multiplication We can multiply a vector by any real number. Example: What is 3<1,5>? Multiply the components inside the vector by the real number 3: <3*1, 3*5> = <3,15>   Geometrically, we get <1,5>, but now it is 3 times as long as it originally was.   In general, when multiplying by a scalar, we get cv, where v is a vector, but c times as long. If c is negative, v points in the opposite direction, c times long. If c is zero, we get a zero vector: 0=<0,0>

Magnitude The length is the hypotenuse of a right triangle if we break the vector down into its components. So the magnitude of the vector becomes: a^2+b^2=c^2. Example: Find the length of <3,4>. Use the formula: sqrt(3^2+4^2) = sqrt(25) = 5.   In general, the length of a vector <a1, a2> is: |<a1,a2>| = sqrt((a1)^2+(a2)^2) In more dimensions, add another squared component: |<a1,a2,a3>| = sqrt((a1)^2+(a2)^2+(a3)^2)

Unit Vector A unit vector is a vector with a magnitude (length) of 1 unit. A unit vector can point in the same direction as another vector, but is scaled down to be size 1. Example: Find a unit vector in the same direction as <7,-24>. -First we need to find out how long the vector is. Use the magnitude formula: sqrt(7^2(-24)^2)= 25 units. -To shrink, we scale down by 1/length, or 1/25. -The unit vector becomes <7/25,-24/25>. 

Standard Unit Vectors <1,0> <0,1> <1,0,0> <0,1,0> <0,0,1>  

Page 2

Properties of Vectors

1. Commutativity: a + b = b + a 2. Associativity: a + (b + c) = (a + b) + c 3. Identity: 0 + a = a 4. Negation: a + (-a) = 0 5. Distributivity: c(a + b) = ca + cb                               (c+d)a = ca + cb                               (cd)a = c(da) 6. Unity: 1a=a

Page 3

Relevant Equations

Magnitude sqrt(a^2+b^2) = length, 2D sqrt(a^2+b^2+c^2) = length, 3D

Unit Vectors To scale down to 1: 1/(sqrt(a^2+b^2)), 2D 1/(sqrt(a^2+b^2+c^2)), 3D

Show full summary Hide full summary

Similar

Subh Milis le Seamus O Neill
l.watters97
Hitler's rise to Chancellorship Jan '33
Simon Hinds
Medical Billing & Coding Terminology
Alisha Fuller
A2 PE History-Rational Recreation in Post-Industrial Britain
sophielee0909
Hamlet Quotations
CuteMarshmallow
Memory: AS Psychology
rae_olamide_xo
Stave One - A Christmas Carol
hannahshields58
Future Tense in Spanish
michaxoxoxo
“The knower’s perspective is essential in the pursuit of knowledge.” To what extent do you agree with this statement?
Lucia Rocha Mejia
Science Unit 1 flashcards
bamoscato