bonsavoir.be
Quiz by , created more than 1 year ago

Maths Quiz on intégration par partie, created by bonsavoir.be on 15/07/2015.

21
0
0
bonsavoir.be
Created by bonsavoir.be over 9 years ago
Close

intégration par partie

Question 1 of 10

1

\[\int x e^x dx = \]

Select one of the following:

  • \[x f(x) - \int f(x) dx \]

  • \[x f(x) + \int f(x) dx \]

  • \[x f(x) - \int f'(x) dx \]

  • aucune de ses solution

Explanation

Question 2 of 10

1

\[\int x ln(x) dx = \]

Select one of the following:

  • \[\int e^x g(x) dx - \int e^x g'(x) dx \]

  • \[e^x g(x) - \int e^x g'(x) dx \]

  • \[e^x g(x) + \int e^x g(x) dx \]

  • \[\int e^x g(x) dx + \int e^x g'(x) dx \]

Explanation

Question 3 of 10

1

\[\int x sin(x) dx = \]

Select one of the following:

  • \[sinx - cos(x) \]

  • \[sinx+ x cos(x) \]

  • \[cosx - x sin(x) \]

  • \[sinx - x cos(x) \]

Explanation

Question 4 of 10

1

\[\int \frac {x^2}{e^x} dx = \]

Select one of the following:

  • \[x (lnx + 1) \]

  • \[x (lnx - 1) \]

  • \[x lnx - 1 \] \]

  • \[\ (lnx -x) \] \]

Explanation

Question 5 of 10

1

\[\int \frac {ln(x)}{x^2} dx = \]

Select one of the following:

  • x^-²

  • \[\-frac {1 + ln(x)}{x} \]

  • \[ \frac{x^2 ln(x)}{2} - \frac{x²}{4}\]

  • ---

Explanation

Question 6 of 10

1

\[\int x^2 cos(x) dx = \]

Select one of the following:

  • \[\e^x (x-1) \]

  • -

  • --

  • ---

Explanation

Question 7 of 10

1

\[ \int sin x e^x dx = \]

Select one of the following:

  • 1

  • 2

  • 3

  • 4

Explanation

Question 8 of 10

1

\[ \int \frac {cos(x)}{e^x} dx = \]

Select one of the following:

  • redd

  • \[ bold \red 5 \]

  • 3

  • 4

Explanation

Question 9 of 10

1

\[ \int cos(x)^2 dx = \]

Select one of the following:

  • -

  • 2

  • ---

  • \[ \frac{1}{2} (x + sin(x) cos(x) = \]

Explanation

Question 10 of 10

1

\[ \int \frac {dx}{cos(x)} = \int \frac {1}{cos(x)} * \frac {sin(x)}{sin(x)} dx = \int \frac {sin(x)}{cos(x)} * \frac {1}{sin(x)} dx = \int tg(x) * \frac {1}{sin(x)} dx = \]

Select one of the following:

  • \[\frac {{\color{red} sin(x)}}{{\color{red} sin(x)}} }\]

  • --

  • ---

  • ----

Explanation