\[\int x e^x dx = \]
\[x f(x) - \int f(x) dx \]
\[x f(x) + \int f(x) dx \]
\[x f(x) - \int f'(x) dx \]
aucune de ses solution
\[\int x ln(x) dx = \]
\[\int e^x g(x) dx - \int e^x g'(x) dx \]
\[e^x g(x) - \int e^x g'(x) dx \]
\[e^x g(x) + \int e^x g(x) dx \]
\[\int e^x g(x) dx + \int e^x g'(x) dx \]
\[\int x sin(x) dx = \]
\[sinx - cos(x) \]
\[sinx+ x cos(x) \]
\[cosx - x sin(x) \]
\[sinx - x cos(x) \]
\[\int \frac {x^2}{e^x} dx = \]
\[x (lnx + 1) \]
\[x (lnx - 1) \]
\[x lnx - 1 \] \]
\[\ (lnx -x) \] \]
\[\int \frac {ln(x)}{x^2} dx = \]
x^-²
\[\-frac {1 + ln(x)}{x} \]
\[ \frac{x^2 ln(x)}{2} - \frac{x²}{4}\]
---
\[\int x^2 cos(x) dx = \]
\[\e^x (x-1) \]
-
--
\[ \int sin x e^x dx = \]
1
2
3
4
\[ \int \frac {cos(x)}{e^x} dx = \]
redd
\[ bold \red 5 \]
\[ \int cos(x)^2 dx = \]
\[ \frac{1}{2} (x + sin(x) cos(x) = \]
\[ \int \frac {dx}{cos(x)} = \int \frac {1}{cos(x)} * \frac {sin(x)}{sin(x)} dx = \int \frac {sin(x)}{cos(x)} * \frac {1}{sin(x)} dx = \int tg(x) * \frac {1}{sin(x)} dx = \]
\[\frac {{\color{red} sin(x)}}{{\color{red} sin(x)}} }\]
----