สัญลักษณ์ในข้อใดใช้เขียนแทนเซต
1. ( )
2. { }
3. [ ]
4. ...
ในการเขียนสมาชิกของเซตแต่ละตัวจะคั่นด้วยเครื่องหมายในข้อใด
1. ,
2. :
3. ;
4. I
เซตในข้อใดมีสมาชิก 4 ตัว
1. เซตของตัวอักษรในคำว่า “ สวยงาม ”
2. เซตของตัวอักษรในคำว่า “ จริงใจ ”
3. เซตของตัวอักษรในคำว่า “ สวยใส ”
4. เซตของตัวอักษรในคำว่า “ สมวัย”
เซตในข้อใดมีสมาชิก 6 ตัว
1. เซตของตัวประกอบของ 8
2. เซตของตัวประกอบของ 10
3. เซตของตัวประกอบของ 12
4. เซตของตัวประกอบของ 15
จำนวนในข้อใดไม่เป็นสมาชิกของเซตของตัวประกอบของ 20
1. 2
2. 4
3. 5
4. 12
2 , 3 , 5 , 7 เป็นสมาชิกของเซตในข้อใด
1. เซตของจำนวนคี่บวก
2. เซตของจำนวนนับตั้งแต่ 2 ขึ้นไป
3. เซตของจำนวนเต็มบวกที่มากกว่า 1
4. เซตของจำนวนเฉพาะระหว่าง 0 ถึง 9
ให้ B เป็นเซตของตัวอักษรในคำว่า “ FOREVER ” เขียนเซต B แบบแจกแจงสมาชิกได้ดังข้อใด
1. { FOREVER }
2. { F ; O ; R ; E ; V ; E ; R }
3. { F , O, R , E ,V , E , R }
4. { F , E , V , O , R }
ข้อใดไม่ใช่การเขียนเซตแบบแจกแจงสมาชิก
1. { 0 , -1 , -2 , -3 }
2. {…, -2 , 0 , 2 , 4 , 6 , ... }
3. { a , b , c , … , z }
4. { x I x เป็นจำนวนเต็มลบ }
ให้ B = { x I x เป็นสระในภาษาอังกฤษ } เป็นการเขียนเซตแบบใด
1. แบบแจกแจงสมาชิก
2. แบบบรรยายลักษณะ
3. แบบบอกเงื่อนไขของสมาชิก
4. แบบไม่แจกแจงสมาชิก
ให้ A = { 1 , 3 , 5 , 7 } เซตในข้อใดหมายถึงเซต A
1. A = { x Ix เป็นจำนวนเต็ม }
2. A = { x I x เป็นจำนวนเต็มคี่ }
3. A = { x Ix เป็นจำนวนคี่ตั้งแต่ 1 ถึง 7 }
4. A = { x Ix เป็นจำนวนเต็มที่น้อยกว่า 7 }