Seja \(V=\mathbb{R}^4\). Determine uma base para o subespaço vetorial de V, \(W = \{(x, y, z, t)\in V;\, y+t+z=0\}\).
\(\alpha = \{(1, 0, 0, 0), \, (0,1, 0, -1),\, (1, -1, 0, 0) \}\)
\(\alpha = \{(1, 1, 0, 1), \, (0,1, 0, -1),\, (1, -1, 0, 0) \}\)
\(\alpha = \{(1, 1, 1, 1), \, (0,1, 0, -1),\, (1, -1, 0, 0) \}\)
Seja \(V=\mathbb{R}^4\). Determine uma base para o subespaço vetorial de V, \(W = \{(x, y, z, t)\in V;\, x+y=0 \, \mbox{e } z-2t=0\}\).
\(\alpha = \{(1, -1, 0, 0), \, (0, 0, 2, 1)\}\)
\(\alpha = \{(1, -1, 0, 0), \, (2, 1, 0, 0)\}\)
\(\alpha = \{(1, -1, 0, 0), \, (1, 2, 2, 1)\}\)