\(\frac{1}{2} + \frac{2}{3} = \) ?
\(\frac{3}{5}\)
\(\frac{7}{6}\)
\(\frac{3}{6}\)
\(\frac{7}{12}\)
\(\frac{5}{7} + \frac{1}{3} = \) ?
\(\frac{22}{21}\)
\(\frac{6}{10}\)
\(\frac{5}{21}\)
\(\frac{6}{21}\)
\(\frac{2}{3} \times \frac{4}{7} = \) ?
\(\frac{8}{21}\)
\(\frac{8}{10}\)
\(\frac{26}{21}\)
\(\frac{1}{4} \div \frac{2}{5} = \) ?
\(\frac{5}{8}\)
\(\frac{2}{5}\)
\(\frac{6}{5}\)
\(\frac{5}{4}\)
Select the fractions which are equivalent to \[\frac{4}{12}\]
\(\frac{1}{3}\)
\(\frac{12}{36}\)
\(\frac{2}{8}\)
\(\frac{1}{4}\)
\(5 \times \frac{2}{9} = \) ?
\(\frac{10}{9}\)
\(\frac{7}{9}\)
\(\frac{10}{45}\)
\(\frac{2}{45}\)
Fully simplify \[\frac{6}{18}\]
\(\frac{2}{6}\)
\(\frac{3}{9}\)