Protein Targeting

Description

Cell Biology and Signalling Quiz on Protein Targeting, created by Charlotte Jakes on 04/01/2020.
Charlotte Jakes
Quiz by Charlotte Jakes, updated more than 1 year ago
Charlotte Jakes
Created by Charlotte Jakes about 5 years ago
577
0

Resource summary

Question 1

Question
What sequence on a protein helps us target to the endoplasmic reticulum?
Answer
  • Signal sequence
  • Nuclear localisation sequence
  • SNARE sequence
  • Glucokinase

Question 2

Question
The signal sequence is the first part of a ER-targeted protein to be synthesised.
Answer
  • True
  • False

Question 3

Question
At which peptide terminal is the signal sequence found?
Answer
  • N-terminal
  • C-terminal

Question 4

Question
The signal sequence codes for a series of hydrophilic amino acids.
Answer
  • True
  • False

Question 5

Question
What molecule binds to a protein-ribosome complex and facilitates binding to a receptor on the endoplasmic reticulum?
Answer
  • Signal Recognition Particle (SRP)
  • Nuclear Localisation Sequence (NLS)
  • SNARE protein
  • HSP70

Question 6

Question
Through what protein is the new protein guided through after it has been targeted to the endoplasmic reticulum?
Answer
  • Translocon channel
  • Signal Recognition Particle
  • SNARE
  • Na+/K+ ATPase

Question 7

Question
Fill in the blanks below to describe protein targeting to the endoplasmic reticulum. 1. The first part of the protein synthesised is the [blank_start]signal sequence[blank_end]. This is a series of [blank_start]hydrophobic[blank_end] amino acids at the [blank_start]N[blank_end]-terminus of the peptide. 2. The [blank_start]signal sequence[blank_end] is recognised by [blank_start]Signal Recognition Particle[blank_end] (SRP). 3. [blank_start]Signal Recognition Particle[blank_end] is recognised by a receptor on the ER membrane. 4. The [blank_start]Signal Recognition Particle[blank_end] is cleaved off, leaving the [blank_start]ribosome[blank_end] bound to the ER membrane. 5. The protein is guided through a t[blank_start]ranslocon[blank_end] protein on the ER membrane as its synthesis continues. 6. The enzyme [blank_start]signal peptidase[blank_end] cleaves the signal sequence off the protein once synthesis is complete.
Answer
  • signal sequence
  • hydrophobic
  • N
  • signal sequence
  • Signal Recognition Particle
  • Signal Recognition Particle
  • Signal Recognition Particle
  • ribosome
  • ranslocon
  • signal peptidase

Question 8

Question
From which face of the golgi are vesicles budded off for transport?
Answer
  • Cis
  • Trans

Question 9

Question
At which face of the golgi are vesicles received from transport?
Answer
  • Cis
  • Trans

Question 10

Question
SNARE proteins facilitate the targeting of what?
Answer
  • Vesicles
  • ER proteins
  • Golgi apparatus proteins
  • Nuclear proteins

Question 11

Question
When are v-SNARES incorporated into the membranes of vesicles?
Answer
  • During budding
  • During phospholipid synthesis
  • During targeting
  • In the cytosol

Question 12

Question
What type of SNARE proteins are present at the target membranes where they will be complementary to a specific v-SNARE?
Answer
  • t-SNARE
  • m-SNARE
  • f-SNARE
  • p-SNARE

Question 13

Question
When does mitochondrial targeting occur?
Answer
  • After translation before folding
  • After folding

Question 14

Question
At which terminus of a mitochondrial-targeted protein will you find the matrix-targeting sequence?
Answer
  • N-terminus
  • C-terminus

Question 15

Question
What protein binds to mitochondrial-targeted proteins in the cytosol and matrix to prevent them from folding?
Answer
  • HSP70 chaperone
  • TIM44
  • TOM40
  • TIM23/17

Question 16

Question
The matrix targeting sequence binds to what?
Answer
  • Import receptor on outer membrane
  • TOM40
  • TIM44
  • HSP70 chaperone

Question 17

Question
What import pore is the mitochondrial protein targeted into first?
Answer
  • TOM40
  • TIM23/17
  • TIM44

Question 18

Question
Cytosolic HSP70 is cleaved from the mitochondrial protein as it enters the first import pore.
Answer
  • True
  • False

Question 19

Question
What is required to cleave HSP70 chaperone from mitochondrial proteins?
Answer
  • ATP hydrolysis
  • GTP hydrolysis
  • ATP synthesis
  • Coenzyme A

Question 20

Question
What is the function of matrix processing protease?
Answer
  • Cleaves matrix-targeting sequence from protein
  • Cleaves HSP70 chaperone from protein
  • Activates TOM40
  • Inactives TIM44

Question 21

Question
Fill in the blanks below to describe how proteins are targeted to the mitochondria. 1. The [blank_start]matrix-targeting sequence[blank_end] is found at the [blank_start]N[blank_end] terminal of the protein. 2. Cytosolic [blank_start]HSP70[blank_end] binds to the protein using energy from [blank_start]ATP[blank_end] to prevent the protein from [blank_start]folding[blank_end]. 3. The [blank_start]matrix-targeting sequence[blank_end] binds to an [blank_start]import receptor[blank_end] on the outer membrane. 4. The [blank_start]import receptor[blank_end] targets the protein through [blank_start]TOM40[blank_end]. Meanwhile, [blank_start]HSP70[blank_end] is cleaved from the protein using [blank_start]ATP[blank_end] hydrolysis. 5. The protein enters the matrix via import pores [blank_start]TIM44[blank_end] and TIM23/[blank_start]17[blank_end]. 6. The protein binds to matrix [blank_start]HSP70[blank_end] to prevent it from [blank_start]folding[blank_end]. 7. [blank_start]Matrix processing protease[blank_end] enzyme cleaves the [blank_start]matrix-targeting sequence[blank_end] from the protein. 8. The protein can now begin [blank_start]folding[blank_end].
Answer
  • matrix-targeting sequence
  • N
  • HSP70
  • ATP
  • folding
  • matrix-targeting sequence
  • import receptor
  • import receptor
  • TOM40
  • HSP70
  • ATP
  • TIM44
  • 17
  • HSP70
  • folding
  • Matrix processing protease
  • matrix-targeting sequence
  • folding

Question 22

Question
When does the targeting of proteins to the nucleus occur?
Answer
  • After folding
  • After translation before folding

Question 23

Question
What property does the Nuclear Localisation Signal have that allows it to target?
Answer
  • Basic
  • Acidic
  • Polar
  • Hydrophobic

Question 24

Question
What protein does the nuclear localisation sequence bind to?
Answer
  • Importin
  • Ran
  • RanGEF
  • SNARE

Question 25

Question
Ran binds to GTP in the cytosol.
Answer
  • True
  • False

Question 26

Question
What converts RanGDP to RanGTP in the cytosol?
Answer
  • Ran guanine nucleotide exchange factor (RanGEF)
  • MAPK
  • MAPKK
  • ATP

Question 27

Question
What happens to RanGTP in the nucleus?
Answer
  • Binds to importin
  • Binds to Nuclear Localisation Sequence
  • Activated by MAPK
  • Destroyed by RanGEF

Question 28

Question
Importin and RanGTP are recycled by their exit from the nucleus after targeting takes place.
Answer
  • True
  • False

Question 29

Question
What does cytosolic Ran GTPase activated protein do?
Answer
  • Stimulates hydrolysis of RanGTP to RanGDP
  • Stimulates formation of RanGTP from RanGDP
  • Activates binding of importin to RanGTP
  • Activates cleavage of importin from Nuclear Localisation Sequence

Question 30

Question
What triggers the release of importin from Ran?
Answer
  • Hydrolysis of RanGTP to RanGDP
  • Change in pH of the cytosol
  • Formation of RanGTP from RanGDP
  • Action of RanGEF

Question 31

Question
Fill in the blanks below to describe the targeting of proteins to the nucleus. 1. The [blank_start]Nuclear Localisation Sequence[blank_end] on the protein binds to [blank_start]importin[blank_end] in the cytosol. 2. Ran binds to [blank_start]GDP[blank_end] in the cytosol. 3. Both of these complexes enter the nucleus via [blank_start]nuclear pores[blank_end]. 4. In the nucleus, Ran [blank_start]Guanine Nucleotide Exchange Factor[blank_end] (RanGEF) converts RanGDP to [blank_start]RanGTP[blank_end]. 5. [blank_start]RanGTP[blank_end] binds to [blank_start]importin[blank_end]. This disrupts [blank_start]importin[blank_end]'s ability to bind to the [blank_start]Nuclear Localisation Sequence[blank_end]. The protein is released. 6. Importin and Ran[blank_start]GTP[blank_end] exit the nucleus via a nuclear pore. 7. Cytosolic Ran [blank_start]GTPase activated protein[blank_end] (Ran GAP) stimulates Ran to hydrolyse [blank_start]GTP[blank_end] to [blank_start]GDP[blank_end]. 8. [blank_start]RanGDP[blank_end] allows the release of [blank_start]importin[blank_end].
Answer
  • Nuclear Localisation Sequence
  • importin
  • GDP
  • nuclear pores
  • Guanine Nucleotide Exchange Factor
  • RanGTP
  • RanGTP
  • importin
  • importin
  • Nuclear Localisation Sequence
  • GTP
  • GTPase activated protein
  • GTP
  • GDP
  • RanGDP
  • importin

Question 32

Question
What are lysosomal proteins tagged with in the Golgi apparatus?
Answer
  • Mannose-6-phosphate
  • Glucokinase
  • Phosphate
  • Importin

Question 33

Question
Mannose-6-phosphate and lysosomal proteins are targeted to transport vesicles in the Golgi via what?
Answer
  • M6P receptors
  • Importin
  • TOM40
  • SNAREs

Question 34

Question
What do transport vesicles from the Golgi containing lysosomal proteins fuse with?
Answer
  • Early endosome
  • Cell membrane
  • Cis face of Golgi apparatus
  • Endoplasmic reticulum

Question 35

Question
ATP synthase continuously pumps H+ into the endosome containing lysosomal proteins. What does this cause?
Answer
  • Dissociation from M6P receptor and a phosphate to form mature hydrolase
  • Dissociation from M6P receptor only
  • Dissociation from a phosphate to form mature hydrolase
  • Cleavage of the lysosomal protein into two products

Question 36

Question
M6P receptors used in lysosomal proteins are targeted back to the Golgi.
Answer
  • True
  • False

Question 37

Question
Fill in the blanks below to describe how proteins are targeted to the lysosomes. 1. Lysosomal proteins are tagged with [blank_start]mannose-6-phosphate[blank_end] in the [blank_start]Golgi apparatus[blank_end]. 2. This complex binds to [blank_start]mannose-6-phosphate[blank_end] receptors and is packaged into [blank_start]vesicles[blank_end]. 3. [blank_start]Vesicles[blank_end] bud off the [blank_start]trans[blank_end] face of the Golgi apparatus and travel to the early [blank_start]endosome[blank_end] with which they fuse. 4. [blank_start]ATP synthase[blank_end] continuously pumps [blank_start]H+[blank_end] ions into the enzyme, reducing the [blank_start]pH[blank_end]. 5. The low [blank_start]pH[blank_end] causes the [blank_start]receptor[blank_end] to be dissociated from the complex as well as [blank_start]dephosphorylation[blank_end] to form a mature hydrolase protein. 6. The receptors are recycled back to the [blank_start]Golgi apparatus[blank_end] via transport [blank_start]vesicles[blank_end].
Answer
  • mannose-6-phosphate
  • Golgi apparatus
  • mannose-6-phosphate
  • vesicles
  • trans
  • Vesicles
  • endosome
  • ATP synthase
  • H+
  • pH
  • pH
  • receptor
  • dephosphorylation
  • vesicles
  • Golgi apparatus

Question 38

Question
What disease is caused by a mutation in the enzyme that phosphorylates mannose?
Answer
  • Inclusion-cell disease
  • Hartnup disease
  • Wernicke-Korsakoff syndrome
  • Cystic fibrosis

Question 39

Question
In [blank_start]inclusion-cell[blank_end] disease, the enzyme that phosphorylates [blank_start]mannose[blank_end] is mutated. This means that lysosomal proteins aren't tagged with [blank_start]mannose-6-phosphate[blank_end] so are not targeted to the [blank_start]lysosomes[blank_end]. The [blank_start]lysosomes[blank_end] therefore lose their function and [blank_start]waste[blank_end] accumulates within the cells. This causes developmental defects and often death before the age of 10 due to heart failure/pneumonia.
Answer
  • inclusion-cell
  • mannose
  • mannose-6-phosphate
  • lysosomes
  • lysosomes
  • waste
Show full summary Hide full summary

Similar

Videnskabsteori
Jonas Klint Westermann
Applied Business Research
Jonas Klint Westermann
The Cytoskeleton
Charlotte Jakes
Global Supply Chain Management
Jonas Klint Westermann
Oral presentation & interaction
Jonas Klint Westermann
Mikroøkonomi
Isabella Rose
Leaning Pitstop 1
kayle sands
Foundational Perspectives in Leading and Managing Organizations
Jonas Klint Westermann
Cells & Organelles
Charlotte Jakes
CBS
bir cihat
Enzyme Properties/Regulation/Kinetics
Charlotte Jakes