Data Collection During Exercise testing

Description

Lung Testing (Exercise Testing) Quiz on Data Collection During Exercise testing, created by LeeAnna Shepherd on 18/08/2016.
LeeAnna Shepherd
Quiz by LeeAnna Shepherd, updated more than 1 year ago
LeeAnna Shepherd
Created by LeeAnna Shepherd almost 8 years ago
2
0

Resource summary

Question 1

Question
SpO2 – Pulse Ox Advantage: [blank_start]Continuous[blank_end] readings Disadvantage: Inaccurate with poor perfusion or [blank_start]motion[blank_end] artifact Terminate test if SpO2 is <[blank_start]85[blank_end]%
Answer
  • Continuous
  • motion
  • 85

Question 2

Question
Tidal Volume Vt = VE / RR Normal: [blank_start]5[blank_end] ml per kg of body weight At low/moderate workloads total ventilation will increase by increasing [blank_start]tidal volume[blank_end] At high workloads total ventilation increases by increasing [blank_start]respiratory rate[blank_end]
Answer
  • 5
  • tidal volume
  • respiratory rate

Question 3

Question
Frequency of Breathing (# of accumulated breathes) / testing time in minutes = RR Normal at rest: [blank_start]8[blank_end] – [blank_start]12[blank_end]
Answer
  • 8
  • 12

Question 4

Question
Minute Ventilation Vt x RR = Ve Normal Resting: [blank_start]5[blank_end] – [blank_start]10[blank_end] L/min Normal Exercising: [blank_start]100[blank_end] – [blank_start]200[blank_end] L/min Maximum minute ventilation = FEV1 x [blank_start]35[blank_end] Should be able to reach [blank_start]70[blank_end]% of max If max minute ventilation is [blank_start]reached[blank_end] this indicates a primary ventilator limitation to exercise.
Answer
  • 5
  • 10
  • 100
  • 200
  • 35
  • 70
  • reached

Question 5

Question
Alveolar Minute Ventilation = (Vt-[blank_start]VD[blank_end]) x [blank_start]RR[blank_end] or = VE – (VD x RR) Estimated anatomical deadspace is [blank_start]1[blank_end] ml per lb of body weight
Answer
  • 1
  • RR
  • VD

Question 6

Question
O2 Consumption – (VO2) Amount of O2 [blank_start]consumed[blank_end] in L/min Normal at Rest: [blank_start].25[blank_end] L/min Normal Exercising: Up to [blank_start]4[blank_end] L/min Requires inline gas analyzers to measure O2%, an FeCO2 [blank_start]analyzer[blank_end] and a spirometer
Answer
  • consumed
  • .25
  • 4
  • analyzer

Question 7

Question
O2 Pulse Volume of O2 consumer per [blank_start]heartbeat[blank_end] (VO2/HR) x [blank_start]1000[blank_end] = mL O2/beat Normal Resting: [blank_start]2.5[blank_end] – [blank_start]4[blank_end] mL O2/beat Normal Exercising: [blank_start]10[blank_end] – [blank_start]15[blank_end] mL O2/beat Significance: O2 pulse that doesn’t increase with high HR indicates [blank_start]heart[blank_end] disease Tachycardia at rest will [blank_start]decrease[blank_end] O2 pulse Arrhythmia will [blank_start]increase[blank_end] O2 pulse Beta Blockers will [blank_start]increase[blank_end] O2 pulse Plateau in O2 consumption will [blank_start]decrease[blank_end] O2 pulse
Answer
  • heartbeat
  • 1000
  • 2.5
  • 4
  • 10
  • 15
  • heart
  • decrease
  • increase
  • increase
  • decrease

Question 8

Question
CO2 Production (VCO2) – Amount of CO2 [blank_start]produced[blank_end] in L/min Normal resting: [blank_start].2[blank_end] L/min Normal exercising: Up to [blank_start]4[blank_end] l/min Gives indication of [blank_start]metabolic[blank_end] status FeCO2 x [blank_start]VE[blank_end] = VCO2
Answer
  • produced
  • .2
  • 4
  • metabolic
  • VE

Question 9

Question
PH pH will decrease due to increased [blank_start]PaCO2[blank_end] and [blank_start]lactic[blank_end] acid In normal patients, pH will not decrease until [blank_start]anaerobic threshold[blank_end] is reached.
Answer
  • lactic
  • PaCO2
  • anaerobic threshold

Question 10

Question
Alveolar-Arterial O2 Tension, A-a Gradient, PAO2-PaO2 or P(A-a)O2 PaO2 <[blank_start]50[blank_end] means you should terminate the tes Normal P(A-a)O2 On RA: [blank_start]10[blank_end]-[blank_start]20[blank_end] On 100% O2: Less than [blank_start]100[blank_end] Increase in P(A-a)O2 with [blank_start]decrease[blank_end] in PaO2: Increased right to left [blank_start]shunt[blank_end], [blank_start]V/Q[blank_end] mismatch, [blank_start]diffusion[blank_end] defects Use Supplemental O2 if [blank_start]hypoxemic[blank_end] at rest.
Answer
  • 50
  • 10
  • 20
  • 100
  • decrease
  • shunt
  • V/Q
  • diffusion
  • hypoxemic

Question 11

Question
Ventilatory Equivalent for O2 (Ve/VO2) Relationship of Ve to [blank_start]workload[blank_end] performed (VO2) Gives indication of [blank_start]efficiency[blank_end] of gas exchange at different workloads [blank_start]Ve[blank_end](BTPS)/[blank_start]VO2[blank_end](STPD) Normal at rest and low/moderate workloads: [blank_start]20[blank_end] – [blank_start]30[blank_end] L/LVO2 Increase in Ve out of proportion to [blank_start]increase[blank_end] in VO2 means [blank_start]pulmonary[blank_end] disease Increase in Ve/VO2 at rest means [blank_start]hyperventilation[blank_end]
Answer
  • workload
  • efficiency
  • Ve
  • VO2
  • 20
  • 30
  • increase
  • pulmonary
  • hyperventilation

Question 12

Question
Ventilatory Equivalent for CO2 (Ve/VCO2) Relationship of Ve to [blank_start]VCO2[blank_end] [blank_start]Ve[blank_end](BTPS)/[blank_start]VCO2[blank_end](STPD) Normal: [blank_start]25[blank_end]-[blank_start]35[blank_end] L/LCO2 Can be used to determine maximum tolerable workloads for patients with [blank_start]pulmonary[blank_end] disease Anaerobic threshold reached when Ve/VCO2 is constant but Ve/VO2 [blank_start]increases[blank_end]
Answer
  • VCO2
  • Ve
  • VCO2
  • 25
  • 35
  • pulmonary
  • increases

Question 13

Question
PaCO2/ETCO2 Used to calculate [blank_start]VD/Vt[blank_end] Normal VD/Vt = [blank_start].2[blank_end] - [blank_start].4[blank_end] at rest [blank_start]Decreases[blank_end] with exercise Moderate Workloads: PaCO2 is constant, [blank_start]PeCO2[blank_end] increases High Workloads: Metabolic [blank_start]acidosis[blank_end] due to lactic acid production
Answer
  • VD/Vt
  • .2
  • .4
  • Decreases
  • PeCO2
  • acidosis

Question 14

Question
Respiratory Exchange Ratio (RER) Relationship of O2 consumption and CO2 production at the mouth which represents gas exchange in the lungs RER = [blank_start]VCO2[blank_end]/[blank_start]VO2[blank_end] or (FeCO2xVe)/VO2 Normal at rest: [blank_start].85[blank_end] Normal with Exercise: [blank_start]1.0[blank_end] or greater RER should [blank_start]increase[blank_end] at anaerobic threshold
Answer
  • VCO2
  • VO2
  • .85
  • 1.0
  • increase

Question 15

Question
Hemodynamics Cardiac Monitor – Simplest way to monitor heart rate and rhythm. Normal HR: [blank_start]60[blank_end] – [blank_start]100[blank_end]
Answer
  • 60
  • 100

Question 16

Question
Blood Pressure: Equipment: Indwelling catheter and pressure transducer You can also take BP [blank_start]manually[blank_end] Normal Values: Systolic: [blank_start]120[blank_end] Diastolic: [blank_start]80[blank_end] Mean: [blank_start]93[blank_end] MAP = (2x [blank_start]diastolic[blank_end] + [blank_start]systolic[blank_end])/3 Heart spends twice as much time in [blank_start]diastole[blank_end].
Answer
  • manually
  • 120
  • 80
  • 93
  • diastolic
  • systolic
  • diastole

Question 17

Question
Central Venous Pressure (CVP) Used to Monitor systemic [blank_start]venous[blank_end] drainage and function of the [blank_start]right[blank_end] heart. Catheter is located in [blank_start]right[blank_end] [blank_start]atria[blank_end]. Normal: [blank_start]2[blank_end]-[blank_start]6[blank_end] mmHG or [blank_start]4[blank_end]-[blank_start]12[blank_end] cmH2O CVP – AKA: Right [blank_start]Atrial[blank_end] Pressure R Atriral filling pressue [blank_start]Right[blank_end] side preload Right ventricular [blank_start]filling[blank_end] pressure [blank_start]Right[blank_end] ventricular end [blank_start]diastolic[blank_end] pressure
Answer
  • venous
  • right
  • right
  • atria
  • 2
  • 6
  • 4
  • 12
  • Atrial
  • Right
  • filling
  • diastolic
  • Right

Question 18

Question
Pulmonary Artery pressure (PAP) PAP and PCWP are measure with [blank_start]balloon[blank_end] tipped [blank_start]flow[blank_end] directed pulmonary artery catheter (Swan Ganz) Catheter is directed through the [blank_start]right[blank_end] side of the heart and positioned in [blank_start]pulmonary artery[blank_end] Normal PAP: Systolic: [blank_start]25[blank_end] mmHg Diastolic: [blank_start]8[blank_end] mmHg Mean: [blank_start]14[blank_end] mmHg Mixed [blank_start]venous[blank_end] samples should be drawn from pulmonary artery. If blood is bright red the balloon was [blank_start]inflated[blank_end] or wedged if PaCO2 = PaO2
Answer
  • balloon
  • flow
  • right
  • pulmonary artery
  • 25
  • 8
  • 14
  • venous
  • inflated

Question 19

Question
Pulmonary Capillary Wedge Pressure (PCWP) When balloon is [blank_start]inflated[blank_end] it will measure PCWP Normal = [blank_start]8[blank_end] mmHg (4-12) Estimates pulmonary [blank_start]venous[blank_end] drainage back to [blank_start]left[blank_end] heart PCWP aka: [blank_start]Left[blank_end] atrial pressure Left atrial [blank_start]filling[blank_end] pressure Left side preload [blank_start]Left[blank_end] ventricular filling pressure Left [blank_start]ventricular[blank_end] end diastolic pressure
Answer
  • inflated
  • 8
  • venous
  • left
  • Left
  • filling
  • Left
  • ventricular

Question 20

Question
Cardiac Output (Qt) Output of left [blank_start]ventricle[blank_end] to systemic [blank_start]arterial[blank_end] circulation Normal Qt is [blank_start]5[blank_end] L/min (4-8) depending on body size Fick equation: Qt = [blank_start]VO2[blank_end]/(C(a-v)O2x [blank_start]10[blank_end]) If stroke volume is known: Qt= [blank_start]HR[blank_end] x [blank_start]Stroke Volume[blank_end] Thermal Dilution: Cold saline injection Cardiac Index = [blank_start]Qt[blank_end] /([blank_start]body surface area[blank_end]) Normal: [blank_start]2.5[blank_end] – [blank_start]4[blank_end] lpm/m2
Answer
  • ventricle
  • arterial
  • 5
  • VO2
  • 10
  • HR
  • Stroke Volume
  • Qt
  • body surface area
  • 2.5
  • 4

Question 21

Question
CVP: ↑ ↑ PAP: N ↓ PCWP: N ↓ QT: N = [blank_start]Right[blank_end] Heart Failure, [blank_start]Cor[blank_end] Pulmonale, [blank_start]Tricuspid[blank_end] Valve Stenosis
Answer
  • Tricuspid
  • Right
  • Cor

Question 22

Question
CVP: ↑ PAP: ↑↑ PCWP: N ↓ QT: N = [blank_start]Lung[blank_end] Disorders, Pulm [blank_start]Embolism[blank_end], [blank_start]Pulm[blank_end] HTN, Air [blank_start]Embolism[blank_end]
Answer
  • Lung
  • Embolism
  • Pulm
  • Embolism

Question 23

Question
CVP: N PAP: ↑ PCWP: ↑↑ QT:↓ = [blank_start]Left[blank_end] heart Failure, [blank_start]mitral[blank_end] valve stenosis, [blank_start]CHF[blank_end], High [blank_start]PEEP[blank_end] effects
Answer
  • Left
  • mitral
  • CHF
  • PEEP

Question 24

Question
CVP: ↑↑ PAP: ↑ PCWP: ↑ QT: ↑ = [blank_start]Hypervolemia[blank_end] CVP: ↓↓ PAP: ↓ PCWP: ↓ QT: ↓ = [blank_start]Hypovolemia[blank_end]
Answer
  • Hypervolemia
  • Hypovolemia

Question 25

Question
Systemic Vascular resistance (SVR) : Pressure gradient across [blank_start]systemic[blank_end] circulation divided by [blank_start]Qt[blank_end] SVR = ([blank_start]MAP[blank_end] – [blank_start]CVP[blank_end]) / Qt Normal: <[blank_start]20[blank_end] mmHg/l/min or 1600 Dynes/sec SVR is [blank_start]increased[blank_end] with systemic hypertension or vasoconstriction
Answer
  • systemic
  • Qt
  • increased
  • 20
  • MAP
  • CVP

Question 26

Question
Pulmonary Vascular Resistance (PVR): Pressure gradient across [blank_start]pulmonary[blank_end] circulation divided by Qt PVR = ([blank_start]MPAP[blank_end] – [blank_start]PCWP[blank_end]) / Qt Normal: < [blank_start]2.5[blank_end] mmHg/L/mi or 200 Dynes/sec PVR is increased with [blank_start]hypoxia[blank_end], [blank_start]pulmonary[blank_end] HTN, [blank_start]lung[blank_end] disease
Answer
  • pulmonary
  • MPAP
  • PCWP
  • 2.5
  • hypoxia
  • pulmonary
  • lung

Question 27

Question
Metabolic Measurements [blank_start]Breath[blank_end]-by-breath measurement Determines [blank_start]metabolic[blank_end] measurements of VO2, VCO2, RR, Vt Requires use of one way valve, [blank_start]pneumotach[blank_end] and continuous sampling of gases. Mixing Chamber Pt inspires room air via 1 way valve then exhales into gas mixing chamber with [blank_start]baffles[blank_end] to completely mix the gases [blank_start]O2[blank_end] and [blank_start]CO2[blank_end] concentration are measured.
Answer
  • Breath
  • metabolic
  • pneumotach
  • O2
  • CO2
  • baffles
Show full summary Hide full summary

Similar

Biology AQA 3.1.3 Cells
evie.daines
GCSE Biology Quiz
joannaherbert
Chemical Symbols
Keera
Geography Coastal Zones Flashcards
Zakiya Tabassum
FCE Practice Fill In The Blank
Christine Sang
Vectors
Andrea Leyden
BIOLOGY HL DEFINITIONS IB
Luisa Mandacaru
GCSE Computing: Hardware
Yasmin F
An Timpeallacht (Foclóir)
Sarah Egan
1PR101 2.test - Část 3.
Nikola Truong
Microbiology MCQs 3rd Year Final- PMU
Med Student