Question 1
Question
Μια συνάρτηση \( f \) λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν
για οποιαδήποτε σημεία \( x_1 \), \( x_2 \) ∈ Δ με \( x_1 < x_2 \) ισχύει \( f( x_1 ) > f( x_2) \).
Question 2
Question
Μια συνάρτηση \( f \) λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της,
όταν για οποιαδήποτε σημεία \( x_1 , x_2 ∈ Δ \) με \( x_1 < x_2 \) ισχύει \( f(x_1) < f(x_2) \) .
Question 3
Question
Αν οι συναρτήσεις \( f \) και \( g \) έχουν όρια στο \( x_0 \) πραγματικούς αριθμούς, δηλαδή
\( \lim\limits_{ x \rightarrow x_0 } f( x) = \ell_1 \) και \( \lim\limits_{ x \rightarrow x_0 } g( x) = \ell_2 \) με \( \ell_1 \), \( \ell_2 \in \mathbb{R} \) ,
τότε \( \lim\limits_{ x \rightarrow x_0 } (f ( x) \cdot g(x)) = \ell_1 \cdot \ell_2 \)
Question 4
Question
Μία συνάρτηση \( f \) με πεδίο ορισμού Α λέγεται συνεχής αν για κάθε \( x_0 \in A \) ισχύει
\[ \lim\limits_{ x \rightarrow x_0 } f(x) = f(x_0) \]
Question 5
Question
Μια συνάρτηση \( f \) με πεδίο ορισμού Α λέγεται συνεχής στο \( x_0 \in A \) αν
\[ \lim\limits_{ x \rightarrow x_0 } f(x) = c \]
Question 6
Question
\( \lim\limits_{ x \rightarrow x_0 } εφ x = εφ x_0 \), όταν \( συν x_0 \neq 0 \)
Question 7
Question
Ισχύει \( (x^v)' = v x^{v-1} \),όπου \( ν \) φυσικός αριθμός.
Question 8
Question
Η παράγωγος της f(x) = ημx είναι η f’(x) = -συνx .
Question 9
Question
Ισχύει \( \left[ f(x) + g(x) \right]' = f'(x) + g'(x) \) για κάθε \( x \) στο κοινό πεδίο ορισμού των \( f, g \)
Question 10
Question
Αν οι συναρτήσεις \( f \) και \( g \) είναι παραγωγίσιμες τότε ισχύει
\[ \left( \dfrac{ f(x) }{ g(x) } \right)' = \dfrac{ f ' (x) }{ g ' (x) } \]
Question 11
Question
Ισχύει \( \left( f(x) \cdot g(x) \right)' = f'(x) \cdot g'(x) \)
Question 12
Question
Είναι \( (συν x)' = - ημ x \) για κάθε \( x \in \mathbb{R} \)
Question 13
Question
Για τη συνάρτηση \( f(x) = \dfrac{1} {x} \), \( x \neq 0 \) ισχύει ότι \( f ′(x) = \dfrac{1}{x^2} \) .
Question 14
Question
Είναι \( \left( \sqrt{x} \right)' = \dfrac{1}{ 2 \sqrt{x} } \) για κάθε x > 0.
Question 15
Question
\( \left( \sqrt{3} \right)' = \dfrac{1}{ 2 \sqrt{3} } \)
Question 16
Question
\( (x^ν ) ′ = ( ν − 1) \cdot x^ν \), όπου ν φυσικός αριθμός.
Question 17
Question
Αν \( f \) και \( g \) είναι παραγωγίσιμες συναρτήσεις, τότε για την παράγωγο της σύνθετης συνάρτησης \( f(g(x)) \) ισχύει:
\[ \left( f(g(x)) \right) ′ = f ′ (g(x)) \cdot g ′ (x) \]
Question 18
Question
Αν οι συναρτήσεις f και g είναι παραγωγίσιμες, τότε ισχύει ότι:
\[ \left( f(x) \cdot g(x) \right) ′ = f ′(x) \cdot g(x) + f(x) \cdot g ′(x) \]
Question 19
Question
Αν μία συνάρτηση \( f \) είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει \( f ′(x) > 0 \) για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα στο Δ.
Question 20
Question
Αν για τη συνάρτηση \( f \) ισχύουν \( f'(x_0) = 0 \) για \(x_0 \in (α, β) \), \( f'(x) > 0 \) στο \( (α,x_0) \) και \( f'(x) < 0 \) στο \( (x_0 ,β) \), τότε η \( f \) παρουσιάζει ελάχιστο στο διάστημα \( α, β \) για \( x = x_0 \) .
Question 21
Question
Αν για τη συνάρτηση \( f \) ισχύει \( f ′ (x_0) = 0 \), για \( x_0 ∈ ( α, β ) \) και η παράγωγός της \( f′ \) διατηρεί πρόσημο εκατέρωθεν του \( x_0 \), τότε η \( f \) είναι γνησίως μονότονη στο ( α, β ) και δεν παρουσιάζει ακρότατο στο διάστημα αυτό.
Question 22
Question
Ένα τοπικό ελάχιστο μιας συνάρτησης στο πεδίο ορισμού της μπορεί να είναι μεγαλύτερο από ένα τοπικό μέγιστο.
Question 23
Question
Οι ποσότητες \( x_i \), \( ν_i \), \( f_i \) για ένα δείγμα συγκεντρώνονται σε ένα συνοπτικό πίνακα, που ονομάζεται πίνακας κατανομής συχνοτήτων.
Question 24
Question
Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής.
Question 25
Question
Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποιοτικής μεταβλητής.
Question 26
Question
Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικούς τομείς, τα εμβαδά ή, ισοδύναμα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες \( v_i \) ή τις σχετικές συχνότητες \( f_i \) των τιμών \( x_i \) της μεταβλητής.
Question 27
Question
Για τη σχετική συχνότητα \( f_i \) ισχύει ότι \( f_i > 1 \), για κάθε i = 1, 2, ..., k.
Question 28
Question
Αν \( x_i \)είναι τιμή μιας ποσοτικής μεταβλητής X , τότε η αθροιστική συχνότητα \( N_i \) εκφράζει το πλήθος των παρατηρήσεων που είναι μεγαλύτερες της τιμής \( x_i \)
Question 29
Question
Το άθροισμα όλων των σχετικών συχνοτήτων των τιμών της μεταβλητής Χ είναι ίσο με 100.
Question 30
Question
Η διάμεσος (δ) ενός δείγματος ν παρατηρήσεων επηρεάζεται από ακραίες παρατηρήσεις.
Question 31
Question
Η διάμεσος είναι ένα μέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις.
Question 32
Question
Η μέση τιμή \( \overline{x} \) ορίζεται από τη σχέση
\[ \overline{x} = \dfrac{1}{v} \sum_{i=1}^{κ} x_{i} v_{i} \]
Question 33
Question
Ο σταθμισμένος αριθμητικός μέσος ή σταθμικός μέσος είναι μέτρο διασποράς.
Question 34
Question
Η διακύμανση (ή διασπορά) της μεταβλητής X ορίζεται από τη σχέση:
\[ s^2 = \dfrac{1}{ν} \sum_{i=1}^{κ} \left( \overline{x} - x_i \right)^2 \cdot v_i \]
Question 35
Question
Η διακύμανση των παρατηρήσεων μιας ποσοτικής μεταβλητής Χ εκφράζεται με τις ίδιες μονάδες με τις οποίες εκφράζονται οι παρατηρήσεις.
Question 36
Question
Ένα δείγμα τιμών μιας μεταβλητής θα είναι ομοιογενές, εάν ο συντελεστής μεταβολής ξεπερνά το 10%.
Question 37
Question
Αν για τους συντελεστές μεταβολής των δειγμάτων Α και Β ισχύει \( CV_B > CV_A \), τότε λέμε ότι το δείγμα Β εμφανίζει μεγαλύτερη ομοιογένεια από το δείγμα Α.
Question 38
Question
Σε μία κανονική ή περίπου κανονική κατανομή το εύρος ισούται με περίπου 6 φορές την τυπική απόκλιση, δηλαδή \( R \approx 6 s \), όπου \( s \) η τυπική απόκλιση.
Question 39
Question
Σε μία κανονική ή περίπου κανονική κατανομή στο \( ( \overline{x} − s , \overline{x} + s ) \) βρίσκεται το 68% περίπου των παρατηρήσεων.
Question 40
Question
Σε μία κανονική ή περίπου κανονική κατανομή στο \( ( \overline{x} − 2 s , \overline{x} + 2 s ) \) βρίσκεται το 99,7% περίπου
των παρατηρήσεων, όπου \( \overline{x} \) η μέση τιμή και \( s \) η τυπική απόκλιση.
Question 41
Question
Ο συντελεστής μεταβολής CV ορίζεται (για \( \overline{x} ≠ 0 ) \) από το λόγο:
\[ CV = \dfrac{ \text{τυπική απόκλιση} }{ \text{ μέση τιμή } } \]
Question 42
Question
Σε μια κανονική ή περίπου κανονική κατανομή το 95% περίπου των παρατηρήσεων βρίσκονται στο διάστημα \( ( \overline{x} − s, \overline{x} + s) \), όπου \( \overline{x} \) η μέση τιμή και \( s\) η τυπική απόκλιση των παρατηρήσεων.
Question 43
Question
Για το γινόμενο δύο παραγωγίσιμων συναρτήσεων \( f \), \( g \) ισχύει ότι:
\[ \left( f ( x ) g(x ) \right)′ = f ′( x ) g(x ) + f ( x ) g′( x ) \]
Question 44
Question
Σε μια ποσοτική μεταβλητή αντί του ραβδογράμματος χρησιμοποιείται το διάγραμμα συχνοτήτων.
Question 45
Question
Ένα δείγμα τιμών μιας μεταβλητής Χ χαρακτηρίζεται ομοιογενές, όταν ο συντελεστής μεταβολής ξεπερνά το 10%
Question 46
Question
\[ ( c f(x) ) ′ = c f ′ (x) \]
Question 47
Question
Για τις σχετικές συχνότητες \( f_i \), όπου i = 1, 2, ...,κ των τιμών \( x_i \) μιας μεταβλητής Χ, ισχύει:
\[ f_1 + f_2 + \ldots + f_κ = 1 \]