Probability

Descripción

notes on probability
Silvia Colombo
Apunte por Silvia Colombo, actualizado hace más de 1 año
Silvia Colombo
Creado por Silvia Colombo hace alrededor de 10 años
21
0

Resumen del Recurso

Página 1

Probability Machine Learning and Pattern Recognition Chris Williams School of Informatics, University of Edinburgh August 2014 (All of the slides in this course have been adapted from previous versions by Charles Sutton, Amos Storkey, David Barber.) 1 / 31 Outline I What is probability? I Random Variables (discrete and continuous) I Expectation I Joint Distributions I Marginal Probability I Conditional Probability I Chain Rule I Bayes' Rule I Independence I Conditional Independence I Some Probability Distributions (for reference) I Reading: Murphy secs 2.1-2.4 2 / 31 What is probability? I Quantication of uncertainty I Frequentist interpretation: long run frequenies of events I Example: The probability of a particular coin landing heads up is 0.43 I Bayesian interpretation: quantify our degrees of belief about something I Example: the probability of it raining tomorrow is 0.3 I Not possible to repeat \tomorrow" many times I Basic rules of probability are the same, no matter which interpretation is adopted 3 / 31

Mostrar resumen completo Ocultar resumen completo

Similar

Maths Probability
Will Thorpe
Probability S1
Alice Kimpton
Maths Exponents and Logarithms
Will Thorpe
New GCSE Maths required formulae
Sarah Egan
GCSE Maths: Statistics & Probability
Andrea Leyden
Counting and Probability
Culan O'Meara
Teoría de Conteo
ISABELLA OSPINA SAENZ
Probability
Ravindra Patidar
Mathematics Prep for maths exam
Lulwah Elhariry
Probability
Dami Alvarez
Higher-order Cognition
Sneha Mittal