Differentiation Rules

Descripción

The next resource in our series on differentiation for high school students looks at differentiation rules. These notes contain explanations on differentiating x\n and differentiating functions. Examples of each type are presented in the form of solved equations.
Niamh Ryan
Apunte por Niamh Ryan, actualizado hace más de 1 año
Niamh Ryan
Creado por Niamh Ryan hace casi 7 años
22
0

Resumen del Recurso

Página 1

Differentiating \(x^n\)

This is the one of the most frequently used rules of differentiation.   \[ \text{If }y=x^n \text{ then} \frac{dy}{dx} = nx^{n-1}\]   This can be used to differentiate surds or fractions involving powers of \( x\) .   For example, \( \sqrt{x} \) can also be written as \( x^{\frac{1}{2}}\) , allowing it to be easily differentiated using the above rule.   \( \frac{3}{x}\) can also be written as \( 3x^{-1}\) , so    \[\frac{d}{dx}(\frac{3}{x})=-3x^{-2}\]  

Página 2

Differentiating functions

\(\frac{d}{dx} \) is a linear operator.  This means it can be separated out over addition or subtraction and constants can be moved outside the operation. Therefore,  \[\frac{d}{dx}(x^m + x^n) = \frac{d}{dx}(x^m) +\frac{d}{dx}(x^n)\]   and \[ \frac{d}{dx}(kx^m) = k\frac{d}{dx}(x^m)\] where \(k\) is any constant.

Página 3

Example 1

Example 1: Differentiate the following function: \[y=3\sqrt{x} + \frac{4}{x^2}\] Answer: As demonstrated on the previous page, we can treat the two terms in this function as if they were separate functions and their constants do not change with differentiation. First, rewrite the function using exponents instead of surds and fractions: \[ y=3x^{\frac{1}{2}} + 4x^{-2}\] and then differentiatie:\[\frac{dy}{dx} = 3(\frac{1}{2})x^{\frac{1}{2} - 1}+4(-2)x^{-2-1}= \frac{3}{2}x^{-\frac{1}{2}}-8x^{-3}\] This can be simplified to give: \[\frac{dy}{dx}=\frac{3}{2 \sqrt{x}} - \frac{8}{x^{-3}}\]

Página 4

Example 2

Example 2: Differentiate the following function: \[y=\frac{x^{2}-3x-4}{x+1}\] Answer: Where there's a fraction with \(x\) terms on top and bottom, factorise the top before continuing. This gives:\[y=\frac{(x-4)(x+1)}{x+1} \] Clearly \((x+1)\) can be factored from top and bottom to give\[y=x-4\] which is the same as \[y=x^1-4x^0\] and then differentiate:\[\frac{dy}{dx} = 1\]  

Mostrar resumen completo Ocultar resumen completo

Similar

PMBOK
Maye Tapia
Martin Luther King, Jr.
maya velasquez
Fórmulas Geométricas (Perímetros)
Diego Santos
Teoria del Consumidor y del Mercado: Oferta, Demanda y Precio
Ani Kimori Rosas
TEOREMA DE PITAGORAS
Alejandra GamboaMLLM
Consecuencias del cambio clímatico
Luisa Tapia
Inglés Exani II - Verbos Irregulares
Gastón Amato
Ambientes Virtuales de Aprendizaje AVA
Fredy Clavijo
CONTAMINACION AMBIENTAL
Ximena gonzalez
Sistema hombre, maquina, entorno
yolanda medina
ESPAÑA FÍSICA: TERMOS
Nuria Prado Álvarez