General Physics - Vectors

Descripción

Prepared by: Justin Ruaya Vectors, Cross Product, Dot products, Angle between Vectors, Addition, Multiplication References: Giancoli, Physics for Engineers and Scientists Wolfson, Essential Physics Fundamentals of Physics
Justin Ruaya
Test por Justin Ruaya, actualizado hace más de 1 año
Justin Ruaya
Creado por Justin Ruaya hace más de 5 años
713
0

Resumen del Recurso

Pregunta 1

Pregunta
We say that the displacement of a particle is a vector quantity. Our best justification for this assertion is
Respuesta
  • displacement can be specified by a magnitude and a direction
  • operating with displacements according to the rules for manipulating vectors leads to results in agreement with experiments
  • a displacement is obviously not a scalar
  • displacement can be specified by three numbers
  • displacement is associated with motion, where velocity is a vector

Pregunta 2

Pregunta
Which of the following is an accurate statement?
Respuesta
  • A vector cannot have zero magnitude if one of its components is not zero
  • The magnitude of a vector can be less than the magnitude of one of its components.
  • If the magnitude of vector A is less than the magnitude of vector B, then the x-component of A is less than the x-component of B.
  • The magnitude of a vector can be positive or negative.

Pregunta 3

Pregunta
In the given figure, express vector \(\vec S\) in terms of \(\vec M\) and \(\vec N\).
Respuesta
  • \[\vec S = -\vec M - \vec N\]
  • \[\vec S = \vec N - \vec M\]
  • \[\vec S = \vec M + \vec N\]
  • \[\vec S = \vec M - \vec N\]

Pregunta 4

Pregunta
Check all statements that are true.
Respuesta
  • The magnitude of a vector can never be less than the magnitude of one of its components
  • If the magnitude of vector \(\vec A\) is less than the magnitude of vector \(\vec B\) , then the x component of \(\vec A\) is less than the x component of \(\vec B\).
  • If all the components of a vector are equal to 1, then that vector is a unit vector.
  • If \(|\vec A + \vec B|=A+B\) and \(|\vec A - \vec B|=A+B\), then \(\vec A\) and \(\vec B\) are parallel with each other.
  • If two vectors point in opposite directions, their cross product must be zero.
  • If two vectors are perpendicular to each other, their dot product must be zero.

Pregunta 5

Pregunta
Which of the following diagram illustrates the relationship \(\vec c = \vec b - \vec a\)?

Pregunta 6

Pregunta
The vector \(\vec V_3\) in the diagram is equal to
Respuesta
  • \(\vec V_1 - \vec V_2\)
  • \(\vec V_1 + \vec V_2\)
  • \(\vec V_2 - \vec V_1\)
  • \(\vec V_1 \cos \theta \)
  • \(\vec V_1 / (\cos \theta)\)

Pregunta 7

Pregunta
Four vectors (\(\vec A, \vec B, \vec C, \vec D\)) all have the same magnitude. The angle \(\theta\) between the adjacent vectors is \(45^{\circ}\) as shown. The correct vector equation is
Respuesta
  • \(\vec A - \vec B - \vec C + \vec D = 0\)
  • \(\vec B + \vec D - \sqrt{2}\vec C=0\)
  • \(\vec A + \vec B = \vec B + \vec D\)
  • \(\vec A + \vec B + \vec C + \vec D = 0\)
  • \((\vec A + \vec C)/\sqrt{2} = -\vec B\)

Pregunta 8

Pregunta
Vectors \(\vec A\) and \(\vec B\) lie in the \(xy\) plane. We can deduce that \(\vec A=\vec B\) if
Respuesta
  • \({A^2}_x+{A^2}_y={B^2}_x+{B^2}_y\)
  • \(A_x+A_y=B_x+B_y\)
  • \(A_x=B_x\) and \(A_y=B_y\)
  • \(\frac{A_y}{A_x}=\frac{B_x}{B_y}\)
  • \(A_x=B_y\) and \(A_y=B_x\)

Pregunta 9

Pregunta
If the eastward component of vector \(\vec A\) is equal to the westward component of vector \(\vec B\) and their northward components are equal. Which one of the following statements about these two vectors is correct?
Respuesta
  • Vector \(\vec A\) is parallel to vector \(\vec B\)
  • Vectors \(\vec A\) and \(\vec B\) point in opposite directions.
  • Vector \(\vec A\) is perpendicular to vector \(\vec B\)
  • The magnitude of vector \(\vec A\) is equal to the magnitude of \(\vec B\).
  • None of the statements.

Pregunta 10

Pregunta
Which of the following operations will not change a vector?
Respuesta
  • Translate it parallel to itself.
  • Rotate it
  • Multiply it by a constant factor.
  • Add a constant vector to it.
  • Translate it perpendicular to itself.
  • None of the choices.

Pregunta 11

Pregunta
If \(\vec A\) and \(\vec B\) are nonzero vectors for which \(\vec A \cdot \vec B=0\), it must follow that
Respuesta
  • \(\vec A \times \vec B=0\)
  • \(\vec A\) is parallel to \(\vec B\).
  • \(|\vec A \times \vec B|=AB\)
  • \(|\vec A \times \vec B|=1\)
  • None of the statements.

Pregunta 12

Pregunta
For the vectors shown in the figure, find the magnitude and direction of vector product \(\vec A \times \vec C\), assuming that the quantities shown are accurate to two significant figures.
Respuesta
  • 16, directed into the plane
  • 16, directed out of the plane
  • 45, directed into the plane
  • 45, directed out of the plane

Pregunta 13

Pregunta
What is the vector product of \(\vec A = 2.00 \hat i + 3.00 \hat j + 1.00 \hat k\) and \(\vec B = 1.00 \hat i - 3.00 \hat j - 2.00 \hat k\)?
Respuesta
  • \(-3.00 \hat i + 5.00 \hat j - 9.00 \hat k\)
  • \(-5.00 \hat i + 2.00 \hat j - 6.00 \hat k\)
  • \(5\)
  • \(2.00 \hat i -9.00 \hat j - 2.00 \hat k\)
  • \(-9\)

Pregunta 14

Pregunta
What is the magnitude of the cross product of a vector of magnitude 2.00 m pointing east and a vector of magnitude 4.00 m pointing 30.0° west of north?
Respuesta
  • 6.93
  • -6.93
  • 4.00
  • -4.00
  • 8.00
  • 6.81

Pregunta 15

Pregunta
Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes \(\vec F_1 = 1.0 N, \vec F_2 = 8.0\) and \(\vec F_3 = 7.0 N\), where N is the standard unit of force, what is the component of the net force \(\vec F_{net}=\vec F_1+ \vec F_2+\vec F_3\) parallel to the floor?
Respuesta
  • 2.5N
  • 5.1N
  • 6.0N
  • 7.8N

Pregunta 16

Pregunta
Vectors A and B are shown in the figure. Vector \(\vec C\) is given by \(\vec C = \vec B -\vec A\). The magnitude of vector \(\vec A\) is 16.0 units, and the magnitude of vector \(\vec B\) is 7.00 units. What is the angle of vector \(\vec C\), measured counterclockwise from the +x-axis?
Respuesta
  • 16.9°
  • 22.4°
  • 73.1°
  • 287°
  • 292°
  • 68

Pregunta 17

Pregunta
You walk 53 m to the north, then turn 60° to your right and walk another 45 m. Determine the direction of your displacement vector. Express your answer as an angle relative to east.
Respuesta
  • 63° N of E
  • 50° N of E
  • 57° N of E
  • 69° N of E

Pregunta 18

Pregunta
Vectors \(\vec A\) and \(\vec B\) are shown in the figure. What is \(|-5.00\vec A + 4.00 \vec B|\)?
Respuesta
  • 31.8
  • \(-32.0 \hat i - 2.00 \hat k\)
  • 1028
  • 34
  • \(-2.00\hat i - 32.0 \hat j\)

Pregunta 19

Pregunta
If \(\vec A = 1.00 \hat i + 4.00 \hat j - 1.00 \hat k, \vec B = 3.00\hat i - 1.00 \hat j - 4.00 \hat k\) , and \(\vec C=-1.00\hat i + 1.00 \hat j\), then \(|(\vec A \times \vec B) \cdot \vec C|\)=?
Respuesta
  • 18
  • \(12.00 \hat i - 6.00 \hat j - 12\hat k\)
  • \(-3.00\hat i -4.00 \hat j-4.00\hat k\)
  • \(6.00 \hat i - 12.00 \hat j - 12\hat k\)
  • \(12\sqrt{3}\)
  • -7
  • 7

Pregunta 20

Pregunta
In the figure, the magnitude of vector \(\vec A\) is 18.0 units, and the magnitude of vector \(\vec B\) is 12.0 units. What vector \(\vec C\) (magnitude and the angle it makes with the +x-axis taking counterclockwise to be positive) must be added to the vectors \(\vec A\) and \(\vec B\) so that the resultant of these three vectors points in the negative x-direction and has a magnitude of 7.50 units?
Respuesta
  • 15.5, 209°
  • 15.5, 151°
  • None of the choices.
  • 7.5, 151°
  • 7.5, 209°
  • 6.12, 209°
  • 6.12, 151°
Mostrar resumen completo Ocultar resumen completo

Similar

Autores y obras de las generación del 98
ignaciobll
Temario de la Selectividad para Extranjeros (UNED)
maya velasquez
Arte del Renacimiento
maya velasquez
Finanzas
marcov7154
LA REPRODUCCION EN LOS ANIMALES
Liliam Beatriz Meneses Quintero
Todos mis RECURSOS...
Ulises Yo
MICROECONOMÍA
ingrinati
Asma bronquial en el niño
sergio.correa08
Las Alteraciones
mariajesus camino
CAN, MUST , COUNTABLE AND UNCOUNTABLE NOUNS
Paula Lopez
Mapa ficha libro
Luis Alberto Barthe Lastra