Pregunta 1
Pregunta
Vereenvoudig/ Simplify \(\sqrt{25x^{16}-9x^{16})}\)
Respuesta
-
\(2x^8\)
-
\(2x^4\)
-
\(4x^8\)
-
\( \pm 4x^4\)
Pregunta 2
Pregunta
Die draaipunt van die funksie gedefinieer deur \(f(x)=x^2-4x-12\) is
The turning point of the graph defined by \(f(x)=x^2-4x-12\) is
Respuesta
-
(2; -16)
-
(-2; -16)
-
(-2; 16)
-
(2; 16)
Pregunta 3
Pregunta
Die uitdrukking/ The expresssion \(f(x)=\sqrt{-x^2+4x+12}\)
Respuesta
-
het 'n minimum waarde van 4/ has a minimum value of 4
-
het 'n maksimum waarde van 4/ has a maximum value of 4
-
het 'n maksimum waarde van -4/ has a maximum value of -4
-
het 'n minimum waarde van -4/ has a minimum value of -4
Pregunta 4
Pregunta
Die funksie gedefinieer deur \(f(x)=x^2-4x-6\) het 'n
The function defined by \(f(x)=x^2-4x-6\) has a
Respuesta
-
minimum \(y\) waarde en 'n negatiese \(y\) afsnit. / minimum \(y\) value and a negative \(y\) intercept.
-
maksimum \(y\) waarde en 'n positiewe \(y\) afsnit/ maximum \(y\) value and a positive \(y\) intercept.
-
minimum \(y\) waarde en 'n positiewe \(y\) afsnit/ minimum \(y\) value and a positivev\(y\) intercept.
-
maksimum \(y\) waarde en 'n negatiewe \(y\) afsnit/ maximum \(y\) value and a negative \(y\) intercept.
Pregunta 5
Pregunta
Die funksie gedefinieer deur \(f(x)=x^2-4x-6\) word gegee. Verder is \(g(x)=f(2x)-1\). Dus is \(g(x)\)=
The function defined by \(f(x)=x^2-4x-6\) is given. Further \(g(x)=f(2x)-1\). Thus \(g(x)\)=
Respuesta
-
\(2x^2-8x-7\)
-
\(4x^2-8x-7\)
-
\(4x^2-8x-5\)
-
\(2x^2-8x-5\)
Pregunta 6
Pregunta
\(2sin^215^\circ -1=\)
Respuesta
-
\(\frac{1}{2}\)
-
\(-\frac{1}{2}\)
-
\(\frac{\sqrt3}{2}\)
-
\(-\frac{\sqrt3}{2}\)
Pregunta 7
Pregunta
Die oppervlak van die vierkant ABCD = \(x^2-2x+1\) word gegee. As FC = 1, bepaal die omtrek van die reghoek ABFE.
The area of the square ABCD = \(x^2-2x+1\) is given. If FC = 1, determine the perimeter of the rectangle ABFE.
Respuesta
-
\(2x-1\)
-
\(x^2-x\)
-
\(4x-2\)
-
\(x^2\)
Pregunta 8
Pregunta
Die definisieverameling (gebied) van \(\frac{1}{\sqrt{20-2x}}-\frac{1}{\sqrt{x-5}}\) is
The domain of \(\frac{1}{\sqrt{20-2x}}-\frac{1}{\sqrt{x-5}}\) is
Respuesta
-
\(x<5\)
-
\(x>10\)
-
\(x<5\) of \(x>10\)
-
\(5<x<10\)
Pregunta 9
Pregunta
Gegee die funksie \(f(x)=-x^2\) vir \(x \in [0; \infty ) \). Dan is die waarde van \(f^{-1}(-4)=\)
Given the function \(f(x)=-x^2\) for \(x \in [0; \infty ) \). Then the value of \(f^{-1}(-4)=\) is
Respuesta
-
2
-
-2
-
\( \pm 2\)
-
nie reëel/ not real
Pregunta 10
Pregunta
Wat is die grootste reghoekige kamp wat 'n boer kan maaak met 600m draad in \(m^2\)
What is the largest rectangular camp a farmer can do with 600m of wire in \(m^2\)
Pregunta 11
Pregunta
Vir watter waardes van \(x\) is \(\frac{x(x-1)}{(x+2)(x+3)}\) ongedefinieerd?
For which values of \(x\) is \(\frac{x(x-1)}{(x+2)(x+3)}\) undefined?
Respuesta
-
0; 1; -2; -3
-
0; 1
-
-2; -3
-
1; -2; -3
Pregunta 12
Pregunta
Beksou die skets. die waarde van c is
Consider the sketch. is the value of c
Pregunta 13
Pregunta
Verander die volgende eksponent in 'n logaritme: \(4^{-2}=\frac{1}{16}\)
Change the following exponent into a logarithm: \(4^{-2}=\frac{1}{16}\)
Pregunta 14
Pregunta
Die hoogte van 'n reghoekige silinder is 5 en die deursnee van die basis is 2. Wat is die volume van die silinder?
The height of a rectangular cylinder is 5 and the diameter of the base is 2. What is the volume of the cylinder?
Pregunta 15
Pregunta
In die skets is PQRS 'n reghoek. Die oppervlakte van \(\Delta\)RST is 6 en \(PT=\frac{2}{5}PS\). Wat is die oppervlakte van PQRS?
In the sketch, PQRS is a rectangle. The area of \(\Delta\) RST is 6 and \(PT=\frac{2}{5}PS\). What is the area of PQRS?
Pregunta 16
Pregunta
In 'n verkiesing is daar 'n totaal van 120 000 stemme in 'n distrik met kandidate A en B. As A wen met 'n verhouding 5 : 3 , hoeveel stemme het party B gekry?
In an election, there are a total of 120,000 votes in a district with candidates A and B. If A wins with a 5: 3 ratio, how many votes did party B get?
Respuesta
-
15 000
-
30 000
-
45 000
-
75 000
Pregunta 17
Pregunta
As \(n\) en \(k\) positiewe heelgetalle is en \(8^n=2^k\), wat is die waarde van \(\frac{n}{k}\)
If\(n\) and \(k\) are positive integers and \(8^n=2^k\), what is the value of \(\frac{n}{k}\)
Respuesta
-
\(\frac{1}{4}\)
-
\(\frac{1}{3}\)
-
4
-
3
Pregunta 18
Pregunta
As \(18+x\) vyf meer is as twee keer \(x\), wat is die waarde van \(2x\)?
If\(18+x\) is five more than twice \(x\), what is the value of \(2x\)?
Pregunta 19
Pregunta
As \(x\) en \(y\) heelgetalle is en \(7<y<16\) en \(\frac{x}{y}=\frac{2}{5}\), hoeveel moontlike waardes kan \(x\) hê?
If\(x\) and\(y\) are integers and \(7<y<16\) and \(\frac{x}{y}=\frac{2}{5}\), how many values can \(x\) have?
Pregunta 20
Pregunta
Gegee die data: 10; 18; 4; 15; 3; 21; \(x\). As \(x\) die mediaan van die sewe getalle is, watter van die volgende kan die waarde van \(x\) wees:
Given the data: 10; 18; 4; 15; 3; 21; \(x\). If \(x\ is the median of the seven numbers, which of the following can be the value of \(x\):