Graph Theory

Descripción

Bachelors Degree Mathematics Test sobre Graph Theory, creado por Will Rickard el 04/01/2016.
Will Rickard
Test por Will Rickard, actualizado hace más de 1 año
Will Rickard
Creado por Will Rickard hace casi 9 años
1089
3

Resumen del Recurso

Pregunta 1

Pregunta
What is the formal name for the points on a graph?
Respuesta
  • Vertices
  • Edges

Pregunta 2

Pregunta
What is the formal name for the lines connecting the points on a graph?
Respuesta
  • Vertices
  • Edges

Pregunta 3

Pregunta
V = [blank_start]{a,b,c,d,e}[blank_end]
Respuesta
  • {a,b,c,d,e}

Pregunta 4

Pregunta
E = [blank_start]{{a, b}, {b, c}, {a, c}, {c, d}}[blank_end]
Respuesta
  • {{a, b}, {b, c}, {a, c}, {c, d}}

Pregunta 5

Pregunta
Two graphs are equal if and only if they have the same vertices and the same edges.
Respuesta
  • True
  • False

Pregunta 6

Pregunta
Two graphs are equal if and only if they have some vertices and the same edges.
Respuesta
  • True
  • False

Pregunta 7

Pregunta
We say that two graphs G and H are [blank_start]isomorphic[blank_end] if we can relabel the vertices of G to obtain H.
Respuesta
  • isomorphic

Pregunta 8

Pregunta
The [blank_start]order[blank_end] of a graph G is the number of vertices of G
Respuesta
  • order

Pregunta 9

Pregunta
The order of a graph G is the number of [blank_start]vertices[blank_end] of G
Respuesta
  • vertices

Pregunta 10

Pregunta
The [blank_start]size[blank_end] of G is the number of edges of G
Respuesta
  • size

Pregunta 11

Pregunta
The size of G is the number of [blank_start]edges[blank_end] of G
Respuesta
  • edges

Pregunta 12

Pregunta
We often write [blank_start]uv[blank_end] as shorthand for an edge {u,v}
Respuesta
  • uv
  • {uv}

Pregunta 13

Pregunta
We often write uv as shorthand for an edge {[blank_start]u, v[blank_end]}
Respuesta
  • u,v

Pregunta 14

Pregunta
We say that an edge e = uv is [blank_start]incident[blank_end] to the vertices u and v.
Respuesta
  • incident
  • adjacent

Pregunta 15

Pregunta
If uv is an edge, we say that the vertices u and v are [blank_start]adjacent[blank_end]
Respuesta
  • adjacent
  • incident

Pregunta 16

Pregunta
u is a [blank_start]neighbour[blank_end] of v and that v is a neighbour of u.
Respuesta
  • neighbour

Pregunta 17

Pregunta
For any vertex v of a graph G, the [blank_start]neighbourhood[blank_end] N(v) of v is the set of neighbours of v
Respuesta
  • neighbourhood

Pregunta 18

Pregunta
For any vertex v of a graph G, the ............. of v is the set of neighbours of v
Respuesta
  • neighbourhood N(v)
  • neighbourhood N(u)
  • compliment N(v)
  • neighbourhood G(v)
  • neighbourhood d(v)
  • neighbourhood N(G)

Pregunta 19

Pregunta
We say that v is isolated if it has no [blank_start]neighbours[blank_end].
Respuesta
  • neighbours

Pregunta 20

Pregunta
We say that v is [blank_start]isolated[blank_end] if it has no neighbours.
Respuesta
  • isolated
  • complementary
  • distinct
  • incident
  • adjacent

Pregunta 21

Pregunta
The neighbourhood of a is N(a) = [blank_start]{b, c}[blank_end]
Respuesta
  • {b, c}

Pregunta 22

Pregunta
The neighbourhood of d is N (d) = [blank_start]{c}[blank_end]
Respuesta
  • {c}

Pregunta 23

Pregunta
The neighbourhood of e is N(e) = [blank_start]empty[blank_end]
Respuesta
  • empty

Pregunta 24

Pregunta
Vertex e is ........ vertex
Respuesta
  • an isolated
  • an adjacent
  • a

Pregunta 25

Pregunta
Vertex e is an [blank_start]isolated[blank_end] vertex
Respuesta
  • isolated

Pregunta 26

Pregunta
The degree of a vertex v in a graph G is d(v) = |N(v)|, that is,
Respuesta
  • The number of neighbours of v
  • The number of edges of v
  • The number of vertices of v
  • The number of v

Pregunta 27

Pregunta
d(v) =
Respuesta
  • |N(v)|
  • |G(v)|
  • 0

Pregunta 28

Pregunta
The vertex degrees are d(a) = [blank_start]2[blank_end], d(b) = [blank_start]2[blank_end], d(c) = [blank_start]3[blank_end], d(d) = [blank_start]1[blank_end] d(e) = [blank_start]0[blank_end].
Respuesta
  • 2
  • 2
  • 3
  • 1
  • 0

Pregunta 29

Pregunta
If G is a graph with n vertices, then the degree of each vertex of G is an integer between 0 and n − 1.
Respuesta
  • True
  • False

Pregunta 30

Pregunta
If G is a graph with n vertices, then the degree of each vertex of G is an integer between [blank_start]0[blank_end] and [blank_start]n − 1[blank_end].
Respuesta
  • 0
  • n − 1

Pregunta 31

Pregunta
If G is a graph with n vertices, then the [blank_start]degree[blank_end] of each vertex of G is an integer between 0 and n − 1.
Respuesta
  • degree

Pregunta 32

Pregunta
The sum of all vertex degrees is twice the number of edges
Respuesta
  • True
  • False

Pregunta 33

Pregunta
the sum of all vertex degrees is [blank_start]twice[blank_end] the number of edges
Respuesta
  • twice

Pregunta 34

Pregunta
The sum of all vertex degrees is twice the number of [blank_start]edges[blank_end]
Respuesta
  • edges

Pregunta 35

Pregunta
The sum of all vertex [blank_start]degrees[blank_end] is twice the number of edges
Respuesta
  • degrees

Pregunta 36

Pregunta
In any graph there are an even number of vertices with odd degree.
Respuesta
  • True
  • False

Pregunta 37

Pregunta
In any graph there are an even number of edges with odd degree.
Respuesta
  • True
  • False

Pregunta 38

Pregunta
Any graph on at least two vertices has two vertices of the same [blank_start]degree[blank_end].
Respuesta
  • degree

Pregunta 39

Pregunta
The [blank_start]degree sequence[blank_end] of a graph G is the sequence of all degrees of vertices in G
Respuesta
  • degree sequence

Pregunta 40

Pregunta
The [blank_start]minimum degree[blank_end] of a graph G, denoted δ(G), is the [blank_start]smallest[blank_end] degree of a vertex of G.
Respuesta
  • minimum degree
  • smallest

Pregunta 41

Pregunta
The [blank_start]maximum degree[blank_end] of a graph G, denoted ∆(G), is the [blank_start]largest degree[blank_end] of a vertex of G.
Respuesta
  • maximum degree
  • largest degree

Pregunta 42

Pregunta
A graph G is [blank_start]regular[blank_end] if every vertex of G has the same degree
Respuesta
  • regular

Pregunta 43

Pregunta
We say that G is k-regular to mean that every vertex has degree k.
Respuesta
  • True
  • False

Pregunta 44

Pregunta
We say that G is [blank_start]k[blank_end]-regular to mean that every vertex has degree k.
Respuesta
  • k

Pregunta 45

Pregunta
We say that G is [blank_start]k-regular[blank_end] to mean that every vertex has degree k.
Respuesta
  • k-regular

Pregunta 46

Pregunta
A graph H is a [blank_start]subgraph[blank_end] of a graph G if we can obtain H by deleting vertices and edges of G.
Respuesta
  • subgraph

Pregunta 47

Pregunta
A graph H is a subgraph of a graph G if we can obtain H by [blank_start]deleting[blank_end] vertices and edges of G
Respuesta
  • deleting

Pregunta 48

Pregunta
H is a [blank_start]spanning[blank_end] subgraph of G if additionally V (H) = V (G), that is, if only edges were deleted.
Respuesta
  • spanning
  • "blank"
  • copy

Pregunta 49

Pregunta
H is a [blank_start]subgraph[blank_end] of a graph G if we can obtain H by deleting vertices and edges of G.
Respuesta
  • subgraph
  • graph
  • spanning subgraph
  • copy

Pregunta 50

Pregunta
Let G be a graph with δ(G) ≥ 2. Then G contains a cycle.
Respuesta
  • True
  • False

Pregunta 51

Pregunta
Let G be a graph with δ(G) ≥ 0. Then G contains a cycle.
Respuesta
  • True
  • False

Pregunta 52

Pregunta
Let G be a graph with N(G) ≥ 2. Then G contains a cycle.
Respuesta
  • True
  • False

Pregunta 53

Pregunta
Any graph with n vertices and at least n edges contains a cycle
Respuesta
  • True
  • False

Pregunta 54

Pregunta
Any graph with n vertices and at least n-1 edges contains a cycle
Respuesta
  • True
  • False

Pregunta 55

Pregunta
Any graph with n+1 vertices and at least n edges contains a cycle
Respuesta
  • True
  • False

Pregunta 56

Pregunta
The length of W is the number of [blank_start]edges[blank_end] traversed
Respuesta
  • edges
  • vertices

Pregunta 57

Pregunta
A walk is closed if the first and last vertices of the walk are the same, that is, if you finish at the same vertex at which you started.
Respuesta
  • True
  • False

Pregunta 58

Pregunta
A walk is open if the first and last vertices of the walk are the same, that is, if you finish at the same vertex at which you started.
Respuesta
  • True
  • False

Pregunta 59

Pregunta
A walk is a path if and only if it has no repeated vertices
Respuesta
  • True
  • False

Pregunta 60

Pregunta
walk is a path if and only if it has repeated vertices
Respuesta
  • True
  • False

Pregunta 61

Pregunta
A closed walk is a cycle if and only if the only repeated vertex is the first and last vertex
Respuesta
  • True
  • False

Pregunta 62

Pregunta
A closed walk is a cycle if and only if there is a repeated vertex at the first and last vertex
Respuesta
  • True
  • False

Pregunta 63

Pregunta
A graph G is [blank_start]connected[blank_end] if for any two vertices u and v of G there is a walk in G from u to v.
Respuesta
  • connected

Pregunta 64

Pregunta
A [blank_start]connected component[blank_end] of G is a maximal connected subgraph of G
Respuesta
  • connected component
  • component
  • subgraph
  • tree
  • cycle

Pregunta 65

Pregunta
A tree is a [blank_start]connected[blank_end] [blank_start]acyclic[blank_end] graph.
Respuesta
  • connected
  • component
  • walk
  • path
  • unconnected
  • join
  • acyclic
  • walks
  • paths
  • cyclic

Pregunta 66

Pregunta
A [blank_start]leaf[blank_end] of a tree is a vertex v with d(v) = [blank_start]1[blank_end].
Respuesta
  • leaf
  • edge
  • vertex
  • 1
  • 2
  • 0
  • 5

Pregunta 67

Pregunta
Any tree on n ≥ 2 vertices has a leaf.
Respuesta
  • True
  • False

Pregunta 68

Pregunta
Any tree on n ≥ 0 vertices has a leaf.
Respuesta
  • True
  • False

Pregunta 69

Pregunta
Any connected graph contains a spanning tree
Respuesta
  • True
  • False

Pregunta 70

Pregunta
Any connected graph on n vertices with precisely n − 1 edges is a tree
Respuesta
  • True
  • False

Pregunta 71

Pregunta
Any connected graph on n vertices with precisely n edges is a tree
Respuesta
  • True
  • False

Pregunta 72

Pregunta
Any acyclic graph on n vertices with precisely n − 1 edges is a tree.
Respuesta
  • True
  • False

Pregunta 73

Pregunta
Any acyclic graph on n vertices with precisely n edges is a tree.
Respuesta
  • True
  • False
Mostrar resumen completo Ocultar resumen completo

Similar

The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Projectiles
Alex Burden
Mathematics Overview
PatrickNoonan
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary