Pregunta 1
Pregunta
Μια συνάρτηση \( f \) λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν
για οποιαδήποτε σημεία \( x_1 \), \( x_2 \) ∈ Δ με \( x_1 < x_2 \) ισχύει \( f( x_1 ) > f( x_2) \).
Pregunta 2
Pregunta
Μια συνάρτηση \( f \) λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της,
όταν για οποιαδήποτε σημεία \( x_1 , x_2 ∈ Δ \) με \( x_1 < x_2 \) ισχύει \( f(x_1) < f(x_2) \) .
Pregunta 3
Pregunta
Αν οι συναρτήσεις \( f \) και \( g \) έχουν όρια στο \( x_0 \) πραγματικούς αριθμούς, δηλαδή
\( \lim\limits_{ x \rightarrow x_0 } f( x) = \ell_1 \) και \( \lim\limits_{ x \rightarrow x_0 } g( x) = \ell_2 \) με \( \ell_1 \), \( \ell_2 \in \mathbb{R} \) ,
τότε \( \lim\limits_{ x \rightarrow x_0 } (f ( x) \cdot g(x)) = \ell_1 \cdot \ell_2 \)
Pregunta 4
Pregunta
Μία συνάρτηση \( f \) με πεδίο ορισμού Α λέγεται συνεχής αν για κάθε \( x_0 \in A \) ισχύει
\[ \lim\limits_{ x \rightarrow x_0 } f(x) = f(x_0) \]
Pregunta 5
Pregunta
Μια συνάρτηση \( f \) με πεδίο ορισμού Α λέγεται συνεχής στο \( x_0 \in A \) αν
\[ \lim\limits_{ x \rightarrow x_0 } f(x) = c \]
Pregunta 6
Pregunta
\( \lim\limits_{ x \rightarrow x_0 } εφ x = εφ x_0 \), όταν \( συν x_0 \neq 0 \)
Pregunta 7
Pregunta
Ισχύει \( (x^v)' = v x^{v-1} \),όπου \( ν \) φυσικός αριθμός.
Pregunta 8
Pregunta
Η παράγωγος της f(x) = ημx είναι η f’(x) = -συνx .
Pregunta 9
Pregunta
Ισχύει \( \left[ f(x) + g(x) \right]' = f'(x) + g'(x) \) για κάθε \( x \) στο κοινό πεδίο ορισμού των \( f, g \)
Pregunta 10
Pregunta
Αν οι συναρτήσεις \( f \) και \( g \) είναι παραγωγίσιμες τότε ισχύει
\[ \left( \dfrac{ f(x) }{ g(x) } \right)' = \dfrac{ f ' (x) }{ g ' (x) } \]
Pregunta 11
Pregunta
Ισχύει \( \left( f(x) \cdot g(x) \right)' = f'(x) \cdot g'(x) \)
Pregunta 12
Pregunta
Είναι \( (συν x)' = - ημ x \) για κάθε \( x \in \mathbb{R} \)
Pregunta 13
Pregunta
Για τη συνάρτηση \( f(x) = \dfrac{1} {x} \), \( x \neq 0 \) ισχύει ότι \( f ′(x) = \dfrac{1}{x^2} \) .
Pregunta 14
Pregunta
Είναι \( \left( \sqrt{x} \right)' = \dfrac{1}{ 2 \sqrt{x} } \) για κάθε x > 0.
Pregunta 15
Pregunta
\( \left( \sqrt{3} \right)' = \dfrac{1}{ 2 \sqrt{3} } \)
Pregunta 16
Pregunta
\( (x^ν ) ′ = ( ν − 1) \cdot x^ν \), όπου ν φυσικός αριθμός.
Pregunta 17
Pregunta
Αν \( f \) και \( g \) είναι παραγωγίσιμες συναρτήσεις, τότε για την παράγωγο της σύνθετης συνάρτησης \( f(g(x)) \) ισχύει:
\[ \left( f(g(x)) \right) ′ = f ′ (g(x)) \cdot g ′ (x) \]
Pregunta 18
Pregunta
Αν οι συναρτήσεις f και g είναι παραγωγίσιμες, τότε ισχύει ότι:
\[ \left( f(x) \cdot g(x) \right) ′ = f ′(x) \cdot g(x) + f(x) \cdot g ′(x) \]
Pregunta 19
Pregunta
Αν μία συνάρτηση \( f \) είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει \( f ′(x) > 0 \) για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα στο Δ.
Pregunta 20
Pregunta
Αν για τη συνάρτηση \( f \) ισχύουν \( f'(x_0) = 0 \) για \(x_0 \in (α, β) \), \( f'(x) > 0 \) στο \( (α,x_0) \) και \( f'(x) < 0 \) στο \( (x_0 ,β) \), τότε η \( f \) παρουσιάζει ελάχιστο στο διάστημα \( α, β \) για \( x = x_0 \) .
Pregunta 21
Pregunta
Αν για τη συνάρτηση \( f \) ισχύει \( f ′ (x_0) = 0 \), για \( x_0 ∈ ( α, β ) \) και η παράγωγός της \( f′ \) διατηρεί πρόσημο εκατέρωθεν του \( x_0 \), τότε η \( f \) είναι γνησίως μονότονη στο ( α, β ) και δεν παρουσιάζει ακρότατο στο διάστημα αυτό.
Pregunta 22
Pregunta
Ένα τοπικό ελάχιστο μιας συνάρτησης στο πεδίο ορισμού της μπορεί να είναι μεγαλύτερο από ένα τοπικό μέγιστο.
Pregunta 23
Pregunta
Οι ποσότητες \( x_i \), \( ν_i \), \( f_i \) για ένα δείγμα συγκεντρώνονται σε ένα συνοπτικό πίνακα, που ονομάζεται πίνακας κατανομής συχνοτήτων.
Pregunta 24
Pregunta
Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής.
Pregunta 25
Pregunta
Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποιοτικής μεταβλητής.
Pregunta 26
Pregunta
Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικούς τομείς, τα εμβαδά ή, ισοδύναμα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες \( v_i \) ή τις σχετικές συχνότητες \( f_i \) των τιμών \( x_i \) της μεταβλητής.
Pregunta 27
Pregunta
Για τη σχετική συχνότητα \( f_i \) ισχύει ότι \( f_i > 1 \), για κάθε i = 1, 2, ..., k.
Pregunta 28
Pregunta
Αν \( x_i \)είναι τιμή μιας ποσοτικής μεταβλητής X , τότε η αθροιστική συχνότητα \( N_i \) εκφράζει το πλήθος των παρατηρήσεων που είναι μεγαλύτερες της τιμής \( x_i \)
Pregunta 29
Pregunta
Το άθροισμα όλων των σχετικών συχνοτήτων των τιμών της μεταβλητής Χ είναι ίσο με 100.
Pregunta 30
Pregunta
Η διάμεσος (δ) ενός δείγματος ν παρατηρήσεων επηρεάζεται από ακραίες παρατηρήσεις.
Pregunta 31
Pregunta
Η διάμεσος είναι ένα μέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις.
Pregunta 32
Pregunta
Η μέση τιμή \( \overline{x} \) ορίζεται από τη σχέση
\[ \overline{x} = \dfrac{1}{v} \sum_{i=1}^{κ} x_{i} v_{i} \]
Pregunta 33
Pregunta
Ο σταθμισμένος αριθμητικός μέσος ή σταθμικός μέσος είναι μέτρο διασποράς.
Pregunta 34
Pregunta
Η διακύμανση (ή διασπορά) της μεταβλητής X ορίζεται από τη σχέση:
\[ s^2 = \dfrac{1}{ν} \sum_{i=1}^{κ} \left( \overline{x} - x_i \right)^2 \cdot v_i \]
Pregunta 35
Pregunta
Η διακύμανση των παρατηρήσεων μιας ποσοτικής μεταβλητής Χ εκφράζεται με τις ίδιες μονάδες με τις οποίες εκφράζονται οι παρατηρήσεις.
Pregunta 36
Pregunta
Ένα δείγμα τιμών μιας μεταβλητής θα είναι ομοιογενές, εάν ο συντελεστής μεταβολής ξεπερνά το 10%.
Pregunta 37
Pregunta
Αν για τους συντελεστές μεταβολής των δειγμάτων Α και Β ισχύει \( CV_B > CV_A \), τότε λέμε ότι το δείγμα Β εμφανίζει μεγαλύτερη ομοιογένεια από το δείγμα Α.
Pregunta 38
Pregunta
Σε μία κανονική ή περίπου κανονική κατανομή το εύρος ισούται με περίπου 6 φορές την τυπική απόκλιση, δηλαδή \( R \approx 6 s \), όπου \( s \) η τυπική απόκλιση.
Pregunta 39
Pregunta
Σε μία κανονική ή περίπου κανονική κατανομή στο \( ( \overline{x} − s , \overline{x} + s ) \) βρίσκεται το 68% περίπου των παρατηρήσεων.
Pregunta 40
Pregunta
Σε μία κανονική ή περίπου κανονική κατανομή στο \( ( \overline{x} − 2 s , \overline{x} + 2 s ) \) βρίσκεται το 99,7% περίπου
των παρατηρήσεων, όπου \( \overline{x} \) η μέση τιμή και \( s \) η τυπική απόκλιση.
Pregunta 41
Pregunta
Ο συντελεστής μεταβολής CV ορίζεται (για \( \overline{x} ≠ 0 ) \) από το λόγο:
\[ CV = \dfrac{ \text{τυπική απόκλιση} }{ \text{ μέση τιμή } } \]
Pregunta 42
Pregunta
Σε μια κανονική ή περίπου κανονική κατανομή το 95% περίπου των παρατηρήσεων βρίσκονται στο διάστημα \( ( \overline{x} − s, \overline{x} + s) \), όπου \( \overline{x} \) η μέση τιμή και \( s\) η τυπική απόκλιση των παρατηρήσεων.
Pregunta 43
Pregunta
Για το γινόμενο δύο παραγωγίσιμων συναρτήσεων \( f \), \( g \) ισχύει ότι:
\[ \left( f ( x ) g(x ) \right)′ = f ′( x ) g(x ) + f ( x ) g′( x ) \]
Pregunta 44
Pregunta
Σε μια ποσοτική μεταβλητή αντί του ραβδογράμματος χρησιμοποιείται το διάγραμμα συχνοτήτων.
Pregunta 45
Pregunta
Ένα δείγμα τιμών μιας μεταβλητής Χ χαρακτηρίζεται ομοιογενές, όταν ο συντελεστής μεταβολής ξεπερνά το 10%
Pregunta 46
Pregunta
\[ ( c f(x) ) ′ = c f ′ (x) \]
Pregunta 47
Pregunta
Για τις σχετικές συχνότητες \( f_i \), όπου i = 1, 2, ...,κ των τιμών \( x_i \) μιας μεταβλητής Χ, ισχύει:
\[ f_1 + f_2 + \ldots + f_κ = 1 \]