La comprensió inicial que tenen els nens de les d'elements i fets concretspropietats de les operacions es basa en allò que ells mateixos poden observar a partir de la utilització. La capacitat per descobrir i fer servir aquestes propietats apareix aviat i creix ràpidament en els primers cursos de
l'ensenyament elemental.
Diapositiva 2
A través de la pràctica i de l'observació de fets concrets, estructuralpodem seguir el camí d'aprenentatge que porta a la generalització i a l'abstracció d'aquestes propietats estructurals. De fet, una presentació explícita o formal de les propietats sol portar a una comprensió superficial, buida
de contingut pel receptor. Empirisme vs. constructivisme.
Diapositiva 3
Les taules de les operacions
Treballar amb les taules de les operacions facilita el descobriment i la generalització de les propietats.Es poden construir les taules mitjançant material manipulable, obtenint els resultats de les operacions i colocant-los a la taula.
Diapositiva 4
Propietats de les operacions
1) Existència d'element neutre. Hi ha un nombre que no altera els altres al sumar o restar. El zero per a l'addició i per a la substracció.2) Propietat commutativa
Commutabilitat de l'addició i no commutabilitat de la substracció.
Diapositiva 5
3) Propietat associativaAssociabilitat de l'addició i no associabilitat de la subtracció.4) Propietat distributivaDistributivitat del producte respecte de l'addició i la subtracció.5) Invariància de la diferència entre dos nombres quan els hi sumem o restem el mateix a tots dos.
Diapositiva 6
6) Operacions inversesLa substracció (resta) és la inversa de l'addició (suma) i la divisió de la multiplicació.Cada propietat comporta un nivell de dificultat diferent en la seva comprensió. A més de les activitats amb materials i de la pràctica del
càlcul hi han activitats dialèctiques, potser no tan emprades i que ens poden ser d'utilitat a l'hora de “detectar” i explicitar aquestes propietats. Aquestes activitats dialèctiques es basen en la discussió a l’aula de les propietats dels nombres. Les discussions es poden iniciar abans de fer una operació amb qüestions com ara: «Quina resposta et sembla que sortirà aproximadament?» o «Busca una situació que es resolgui
fent servir aquesta operació»
Diapositiva 7
Les taules de sumar i restar
La comprensió i memorització de les taules de sumar i restar són necessàries per facilitar la rapidesa del càlcul i afavorir les estratègies de càlcul mental.a) La suma per reunió d'objectes compresos entre el 0 i el 5, són els resultats inicials.b) Suma per reunió d'objectes compresos entre el 0 i el 10.
Diapositiva 8
Estratègies numèriques de la suma
A l’aplicar al càlcul certes estratègies bàsiques de manera reiterada, s’afavoreix la memorització dels resultats bàsics.Les estratègies numèriques de la suma són les següents:– La suma de 1, es basa en el comptatge numèric verbal: 1+1, 2+1, 3+1, 4+1...– La propietat commutativa, es pot demostrar amb materials manipulables: 5+4 = 4+5
Diapositiva 9
– Les sumes de dobles, els sumands són iguals: 1+1, 5+5, 100+100...– Dobles més/menys 1, si es coneixen els dobles dels números és poden deduir altres resultats additius o subtractius:
3+2 = (2+2)+1– Dobles més/menys dos:
10+8 = (10+10)-2– Compensació al voltant de la desena:
8+5 = (8+2)+3
Diapositiva 10
– Invers de la suma: 7-3 es pot interpretar com 3+ __ =7 – Comptatge progressiu, si els números són propers 37-35=2– Comptatge regressiu, en els casos en que el substraend sigui 1 o 2 13-2=11– Sumar zero a un nombre, 3+0=3– Sumar 10 a un nombre, és substituir el zero del 10 pel nombre 10+5=15
Diapositiva 11
Tècniques de càlcul mental
Totes les tècniques de càlcul tenen un esquema comú: disposar d’un repertori de resultats i estratègies prèvies (com ara les de l’apartat anterior) i transformar els nombres per tal de poder aplicar-los.Un repertori estructurat i raonat sempre és més fàcil de recordar, tot i que requereix un cert temps d’aprenentatge.S’hauria d’afavorir la substitució de les (avorrides) activitats de repetició de les taules per altres de més engrescadores i variades.Pel que fa la resta, el repertori és semblant al de la suma.