Normal Distribution

Descripción

A-Levels Further Mathematics Diapositivas sobre Normal Distribution, creado por Alex Burden el 21/04/2017.
Alex Burden
Diapositivas por Alex Burden, actualizado hace más de 1 año
Alex Burden
Creado por Alex Burden hace más de 7 años
97
0

Resumen del Recurso

Diapositiva 1

    Normal Distribution
    X~N(μ,σ^2) The mean μ is always in the middle The graph is symmetrical about the middle The larger the value of σ^2 the more flat the curve The area between the curve and the x-axis is the probability P(X=a)=0 https://www.mathsisfun.com/data/standard-normal-distribution.html
    Pie de foto: : A Bell Curve Graph

Diapositiva 2

    Standard Normal
    Let Z be a Continuous Random Variable that is Normally Distributed with μ=0 and unit variance (σ^2), then Z is the Standard Normal∴ Z~N(0,1)Use Table 7 in Stats Booklet

Diapositiva 3

    Non-Standard Normal
    Z=X-μ/σ  ⇒  Z~N(0,1)NB: Divide by Standard Deviation
    EquationsP(Z>a)=Q(a)P(Z<a)=1-Q(a)P(Z>-a)=1-Q(a)P(Z<-a)=Q(a)P(a<Z<b)=Q(a)-Q(b)P(-a<Q<b)=1-Q(b)-Q(a)P(-a<Z<-b)=Q(b)-Q(a)
Mostrar resumen completo Ocultar resumen completo

Similar

FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
Maths GCSE - What to revise!
livvy_hurrell
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell
STEM AND LEAF DIAGRAMS
Elliot O'Leary
TYPES OF DATA
Elliot O'Leary
Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan